Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 4, pp 2429–2434 | Cite as

Temperature modulated optical refractometry

A pathway towards curing kinetic of polyurethane from oxypropylated kraft lignin
  • Julia R. Gouveia
  • Suel E. Vidotti
  • Aline C. Augusto
  • Lara B. Tavares
  • Demetrio J. dos SantosEmail author


Kraft lignin has been widely proposed as a renewable raw material for bio-based polyurethane (PU) synthesis. Drawbacks related to direct use of unmodified lignin for this purpose motivated considerable efforts for lignin chemical modifications, including oxypropylation, resulting in high-performance PUs. A molecular perspective on curing kinetic characterization of reactive PUs might shed some light on the relationship between PU molecular organization and phase formation during curing. This type of investigation requires the monitoring of specific thermodynamic susceptibility, i.e. volume expansion coefficient, which allows accessing molecular organization and cohesion. A novel experimental technique, temperature-modulated optical refractometry (TMOR) has in many cases the capability to identify and differentiate static, kinetic and dynamic molecular contributions to volume expansion coefficient changes. In our work, TMOR was applied to monitor the curing kinetic of bio-based reactive PU, obtained from oxypropylated kraft lignin. PUs were synthesized under three NCO-to-OH ratios and cured at 25 °C. Results revealed chemically induced glass transition of PUs and pointed out different curing rates and mass densities, as a consequence of NCO content.


Kraft lignin Polyurethane Thermal analysis Optical refractometry 



The authors are thankful to Brazilian agency FAPESP for the financial support to the present work (Proc. FAPESP No. 2017/22936-9 and Proc. FAPESP No. 2018/14002-9).


  1. 1.
    Tavares LB, Boas CV, Schleder GR, Nacas AM, Rosa DS, Santos DJ. Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym Lett. 2016;10:927–40.CrossRefGoogle Scholar
  2. 2.
    Nacas AM, Ito NM, Sousa RRD, Spinacé MA, Dos Santos DJ. Effects of NCO:OH ratio on the mechanical properties and chemical structure of Kraft lignin-based polyurethane adhesive. J Adhes. 2017;93:18–29.CrossRefGoogle Scholar
  3. 3.
    Tavares LB, Ito NM, Salvadori MC, dos Santos DJ, Rosa DS. PBAT/kraft lignin blend in flexible laminated food packaging: peeling resistance and thermal degradability. Polym Test. 2018;67:169–76.CrossRefGoogle Scholar
  4. 4.
    Gouveia JR, Lucius da Costa C, Jackson dos Santos D. Synthesis of lignin-based polyurethanes: a mini-review. Mini Rev Org Chem. 2018;15:1–8.Google Scholar
  5. 5.
    Morsella M, D’Alessandro N, Lanterna AE, Scaiano JC. Improving the sunscreen properties of TiO2 through an understanding of its catalytic properties. ACS Omega. 2016;1:464–9.CrossRefGoogle Scholar
  6. 6.
    Sugano-Segura ATR, Tavares LB, Rizzi JGF, Rosa DS, Salvadori MC, dos Santos DJ. Mechanical and thermal properties of electron beam-irradiated polypropylene reinforced with Kraft lignin. Radiat Phys Chem. 2017;139:5–10.CrossRefGoogle Scholar
  7. 7.
    Jablonskis A, Arshanitsa A, Arnautov A, Telysheva G, Evtuguin D. Evaluation of Ligno Boost™ softwood kraft lignin epoxidation as an approach for its application in cured epoxy resins. Ind Crops Prod. 2018;112:225–35.CrossRefGoogle Scholar
  8. 8.
    Ferdosian F, Yuan Z, Anderson M, Xu C. Synthesis and characterization of hydrolysis lignin-based epoxy resins. Ind Crops Prod. 2016;91:295–301.CrossRefGoogle Scholar
  9. 9.
    Li Y, Ragauskas AJ. Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol. 2012;32:210–24.CrossRefGoogle Scholar
  10. 10.
    de Oliveira F, Ramires EC, Frollini E, Belgacem MN. Lignopolyurethanic materials based on oxypropylated sodium lignosulfonate and castor oil blends. Ind Crops Prod. 2015;72:77–86.CrossRefGoogle Scholar
  11. 11.
    Wu LCF, Glasser WG. Engineering plastics from lignin. I. Synthesis of hydroxypropyl lignin. J Appl Polym Sci. 1984;29:1111–23.CrossRefGoogle Scholar
  12. 12.
    Glasser WG, Barnett CA, Rials TG, Saraf VP. Engineering plastics from lignin II. Characterization of hydroxyalkyl lignin derivatives. J Appl Polym Sci. 1984;29:1815–30.CrossRefGoogle Scholar
  13. 13.
    Mahmood N, Yuan Z, Schmidt J, Xu C. Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized Kraft lignin via direct replacement or oxypropylation. Eur Polym J. 2015;68:1–9.CrossRefGoogle Scholar
  14. 14.
    Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN. Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res. 2009;48:2583–9.CrossRefGoogle Scholar
  15. 15.
    Sultan W, Busnel JP. Kinetic study of polyurethanes formation by using differential scanning calorimetry. J Therm Anal Calorim. 2006;83:355–9.CrossRefGoogle Scholar
  16. 16.
    Šimon P, Fratričová M, Schwarzer P, Wilde HW. Evaluation of the residual stability of polyurethane automotive coatings by DSC: equivalence of Xenotest and desert weathering tests and the synergism of stabilizers. J Therm Anal Calorim. 2006;84:679–92.CrossRefGoogle Scholar
  17. 17.
    Müller U, Philipp M, Thomassey M, Sanctuary R, Krüger JK. Temperature modulated optical refractometry: a quasi-isothermal method to determine the dynamic volume expansion coefficient. Thermochim Acta. 2013;555:17–22.CrossRefGoogle Scholar
  18. 18.
    Philipp M, Nies C, Ostermeyer M, Possart W, Krüger JK. Thermal glass transition beyond kinetics of a non-crystallizable glass-former. Soft Matter. 2018;14:3601–11.CrossRefGoogle Scholar
  19. 19.
    Philipp M, Aleksandrova R, Müller U, Ostermeyer M, Sanctuary R, Müller-Buschbaum P, Krüger JK. Molecular versus macroscopic perspective on the demixing transition of aqueous PNIPAM solutions by studying the dual character of the refractive index. Soft Matter. 2014;10:7297–305.CrossRefGoogle Scholar
  20. 20.
    Aleksandrova R, Philipp M, Müller U, Rioboo RJ, Ostermeyer M, Sanctuary R, et al. Phase instability and molecular kinetics provoked by repeated crossing of the demixing transition of PNIPAM solutions. Langmuir. 2014;30:11792–801.CrossRefGoogle Scholar
  21. 21.
    Häupler M, Savitri RA, Hutschenreuter V, Flöter E. Application of temperature modulated optical refractometry for the characterization of the crystallization behavior of palm oil. Eur J Lipid Sci Technol. 2018;120:1–10.CrossRefGoogle Scholar
  22. 22.
    Häupler M, Flöter E. Determination of the crystallization behavior of lipids by temperature modulated optical refractometry. Food Anal Methods. 2018;11(2347–59):23.Google Scholar
  23. 23.
    Philipp M, Zimmer B, Ostermeyer M, Krüger JK. Polymerization-induced shrinkage and dynamic thermal expansion behavior during network formation of polyurethanes. Thermochim Acta. 2019;677:144–50.CrossRefGoogle Scholar
  24. 24.
    Ito NM, Gouveia JR, Vidotti SE, Julienne M, Ferreira GC, Jackson D, et al. Interplay of polyurethane mechanical properties and practical adhesion of flexible multi-layer laminates. J Adhes. 2019;94:1–14.CrossRefGoogle Scholar
  25. 25.
    Brandrup J, Immergut EH. Polymer handbook. New York: Wiley; 1975.Google Scholar
  26. 26.
    dos Santos D, Gouveia JR, Philipp M, Augusto AC, Ito NM, Krüger JK. Temperature modulated optical refractometry: a novel and practical approach on curing and thermal transitions characterizations of epoxy resins. Polym Test. 2019;77:105915.CrossRefGoogle Scholar
  27. 27.
    Auld BA. Acoustic fields and waves in solids. New York: Wiley; 1973.Google Scholar
  28. 28.
    Campbell JA, Goodwin AA, Simon GP. Dielectric relaxation studies of miscible polycarbonate/polyester blends. Polymer (Guildford). 2001;42:4731–41.CrossRefGoogle Scholar
  29. 29.
    Chin YH, Zhang C, Wang P, Inglefield PT, Jones AA, Kambour RP, et al. Glass transition dynamics in a compatible blend by two-dimensional solid-state NMR. Macromolecules. 1992;25:3031–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Engineering, Modelling and Applied Social Sciences CentreFederal University of ABC (UFABC)Santo AndréBrazil

Personalised recommendations