Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 6, pp 4303–4312 | Cite as

The effect of partial substitution of Bi on colour properties and thermal stability of BixPr1−xFeO3 pigments

  • Jana LuxováEmail author
  • Petra Šulcová
Article
  • 54 Downloads

Abstract

The samples of BixPr1−xFeO3 (x = 0–0.3) were prepared by conventional ceramic method. The main aim of this work was to focus on determination of influence of partial Bi substitution for Pr on chromaticity and thermal stability. The formation temperature of the orthoferrites was chosen according to the results of DTA/TG analysis. X-ray powder diffraction analysis showed that solid solutions with orthorhombic structure were created. Results of the work proved that Bi substitution for Pr in PrFeO3 has significant impact on colour properties and thermal stability. Start of sintering of PrFeO3 was detected at 1086 °C and due to substitution of Bi3+ decreased to 956 °C (for x = 0.3). Thermal stability of the samples with x = 0.2 and x = 0.3 was limited at 1371 °C and 1360 °C, respectively. However, final colour was positively affected by the addition of Bi3+. Colour shades of powder shifted from yellowish brown to reddish brown with increasing amount of Bi ions. Very interesting colours of different deep yellowish and reddish brown shades were obtained after their application into organic binder. Mean particle size for all milled compounds prepared at 1000 °C was around 1 μm and for samples calcined at 1100 °C ranged between 1 and 1.6 μm.

Keywords

Orthoferrite Thermal analysis Thermal stability Optical properties 

Notes

Acknowledgements

This work has been supported by Grant Agency of Czech Republic, Project No. 16-06697S.

References

  1. 1.
    Swiller DR. Inorganic pigments. Kirk-Othmer encyclopedia of technology. 5th ed. New York: Wiley; 2006.Google Scholar
  2. 2.
    Ahmed MA, El-Dek SI. Extraordinary role of Ca2+ ions on the magnetization of LaFeO3 orthoferrite. Mater Sci Eng. 2006;B128:30–3.Google Scholar
  3. 3.
    Dohnalová Ž, Vontrončíková M, Šulcová P. Characterization of metal oxide-doped lutetium orthoferrite powders from the pigmentary point of view. J Therm Anal Calorim. 2013;113:1223–9.Google Scholar
  4. 4.
    Geller S. Crystal structure of gadolinium orthoferrite, GdFeO3. J Chem Phys. 1956;24:1236–9.Google Scholar
  5. 5.
    Cristóbal AA, Botta PM, Bercoff PG, Aglietti EF, Bertorello HR, Porto López JM. Mechanochemically assisted synthesis of yttrium–lanthanum orthoferrite: structural and magnetic characterization. J Alloy Compd. 2010;495:516–9.Google Scholar
  6. 6.
    Minh NQ. Ceramic fuel cell. J Am Ceram Soc. 1993;79:563–88.Google Scholar
  7. 7.
    Shimizu Y, Shimabukuri M, Arai H, Seiyama T. Enhancement of humidity sensitivity for peroskite-type oxides having semiconductivity. Chem Lett. 1985;14:917–20.Google Scholar
  8. 8.
    Obayashi H, Kudo T. Properties of oxygen deficient perovskite-type compounds and their use as alcohol sensors. Nippon Kagaku Kaishi. 1982;10:1568–72.Google Scholar
  9. 9.
    Takahashi Y, Taguchi H. Effect of carbon monoxide oxidation on electrical properties of (La0.8Sr0.2)FeO3. J Mater Sci Lett. 1984;3:251–3.Google Scholar
  10. 10.
    Traversa E, Matsushima S, Okada Y, Sadaoka Y, Sakai Y, Watanabe K. NO2 sensitive LaFeO3 thin films prepared by R.F. sputtering. Sens Actuators, B. 1995;25:661–4.Google Scholar
  11. 11.
    Arakawa T, Kurachi H, Shiokawa J. Physicochemical properties of rare earth perovskite oxide used as gas sensor material. J Mater Sci. 1985;4:1207–10.Google Scholar
  12. 12.
    Bouwmeester HJM, Kruidhof H, Burggraaf AJ. Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics. 1994;72:185–94.Google Scholar
  13. 13.
    Inoue T, Seki N, Egushi K, Arai H. Low-temperature operation of solid electrolyte oxygen sensors using perovskite-type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc. 1990;137:2523–7.Google Scholar
  14. 14.
    Alcock CB, Doshi RC, Shen Y. Perovskite electrodes for sensors. Solid State Ionics. 1992;51:281–9.Google Scholar
  15. 15.
    McCarty JG, Wise H. Perovskite catalysts for methane combustion. Catal Today. 1990;8:231–48.Google Scholar
  16. 16.
    Tabata K, Misono M. Elimination of pollutant gases—oxidation of CO, reduction and decomposition of NO. Catal Today. 1990;8:249–61.Google Scholar
  17. 17.
    Sreeram KJ, Aby CHP, Nair BU, Ramasami T. Colored cool colorants based on rare earth metal ions. Sol Energy Mater Sol Cells. 2008;92:1462–7.Google Scholar
  18. 18.
    Dohnalová Ž, Šulcová P, Trojan M. Synthesis and characterization of LnFeO3 pigments. J Therm Anal Calorim. 2008;91:559–63.Google Scholar
  19. 19.
    Teague JR, Gerson R, James WJ. Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 1970;8:1073–5.Google Scholar
  20. 20.
    Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst B. 1990;46:698–702.Google Scholar
  21. 21.
    Lebeugle D, Colson D, Forget A, Viret M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett. 2007;91:022997.Google Scholar
  22. 22.
    Kaczmarek W, Pająk Z, Połomska M. Differential thermal analysis of phase transition in (Bi1−xLax)FeO3 solid solution. Solid State Commun. 1975;17:807–10.Google Scholar
  23. 23.
    Fischer W, Pająk Z, Połomska M. Differential thermal analysis of phase transition in (Bi1−xLax)FeO3 solid solution. Solid State Commun. 1975;17:807–10.Google Scholar
  24. 24.
    Smolenskii GA, Chupis IE. Ferroelectromagnets. Sov Phys Usp. 1982;25:475–93.Google Scholar
  25. 25.
    Arnold DC, Knight KS, Catalan G, Redfern SAT, Scott JF, Lightfoot P, Morrison FD. The β-to-γ transition in BiFeO3: a powder neutron diffraction study. Adv Funct Mater. 2010;20:2116–23.Google Scholar
  26. 26.
    Palai R, Palai R, Kartiyar RS, Schmid H, Tissot P, Clark SJ, Robertson J, Redfern SAT, Catalan G, Scott JF. β phase and γ-β metal insulator transition in multiferroic BiFeO3. Phys Rev B. 2008;77:014110.Google Scholar
  27. 27.
    Arnold DC, Knight KS, Morrison FD, Lightfoof P. Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic β phase. Phys Rev Lett. 2009;102:027602.PubMedGoogle Scholar
  28. 28.
    Valant M, Axelsson AK, Alford N. Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater. 2007;19:5431–6.Google Scholar
  29. 29.
    Le Bras G, Colson D, Forget A, Genand-Riondet N, Tourbot R, Bonville P. Magnetization and magnetoelectric effect in Bi1−xLaxFeO3 (0 ≤ x ≤ 0.15). Phys Rev B. 2009;80:134417.Google Scholar
  30. 30.
    Chen P, Günaydın-Şen Ö, Ren JW, Qin Z, Brinzari TV, McGill S, Cheong SW, Musfeldt JL. Spin cycloid quenching in Nd3+-substituted BiFeO3. Phys Rev B. 2012;83:014407.Google Scholar
  31. 31.
    Khomchenko VA, Paixão JA. Ti doping-induced magnetic and morphological transformations in Sr- and Ca-substituted BiFeO3. J Phys: Condens Matter. 2016;28:166004.Google Scholar
  32. 32.
    Yuan L, Han A, Ye M, Chen X, Yao L, Ding Ch. Synthesis and characterization of environmentally benign inorganic pigments with high NIR reflectance: lanthanum-doped BiFeO3. Dyes Pigment. 2018;148:137–46.Google Scholar
  33. 33.
    Pelovski Y, Petkova V, Dombalov I. Thermotribochemical treatment of low grade natural phosphates. J Therm Anal Calorim. 2007;88:207–12.Google Scholar
  34. 34.
    Joint Committee on Powder Diffraction Standards. International centre of diffraction data. Swarthmore: JCPDS; 1983.Google Scholar
  35. 35.
    Commission Internationale de l´Eclairage. Recommendations on uniform colour space, colour difference equations, psychometric color terms. Supplement No 2 of CIE publication no 15 (E1-1,31) 1971, Paris Bureau Central de la CIE; 1978.Google Scholar
  36. 36.
    Šulcová P, Trojan M. Thermal analysis of pigments based on Bi2O3. J Therm Anal Calorim. 2006;84:737–40.Google Scholar
  37. 37.
    Šulcová P, Trojan M. Study of Ce1−xPrxO2 pigments. Thermochim Acta. 2003;395:251–5.Google Scholar
  38. 38.
    Luxová J, Šulcová P, Trojan M. Influence of firing temperature on the color properties of orthoferrite PrFeO3. Thermochim Acta. 2014;579:80–5.Google Scholar
  39. 39.
    Dohnalová Ž, Šulcová P, Bělina P, Vlček M, Gorodylova N. Brown pigments based on perovskite structure of BiFeO3−δ. J Therm Anal Calorim. 2018;133:421–8.Google Scholar
  40. 40.
    Zbořil R, Mashlan M, Krausova D, Pikal P. Cubic β-Fe2O3 as the product of the thermal decomposition of Fe2(SO4)3. Hyperfine Interact. 1999;120:497–501.Google Scholar
  41. 41.
    Danno T, Asaoka H, Nakanishi M, Fujii T, Ikeda Y, Kusano Y, Takada J. Formation mechanism of nano-crystalline β-Fe2O3 particles with bixbyite structure and their magnetic properties. J Phys: Conf Ser. 2010;200:082003.Google Scholar
  42. 42.
    Polat Y, Mehmet A, Dağdemir Y. Magnetic properties of Co-doped Bismuth oxide (δ-Bi2O3) at low temperature. J Low Temp Phys. 2018;193:74–84.Google Scholar
  43. 43.
    Abdellahi M, Abhari AS, Bahmanpour M. Preparation a characterization of orthoferrite PrFeO3 nanoceramic. Ceram Int. 2016;42:4637–41.Google Scholar
  44. 44.
    Maître A, François M, Gachon JC. Experimental study of the Bi2O3-Fe2O3 pseudo-binary system. J Phase Equilib Diffus. 2004;25:59–67.Google Scholar
  45. 45.
    Selbach SM, Einarsrud MA, Grande T. On the thermodynamic stability of BiFeO3. Chem Mater. 2009;21:169–73.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Inorganic Technology, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations