Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 2091–2101 | Cite as

Ponceau 4R azoic red dye

Thermal behavior, optical anisotropy and terahertz spectroscopy study
  • Marian Leulescu
  • Gabriela Iacobescu
  • Mihaela Bojan
  • Petre RotaruEmail author
Article
  • 58 Downloads

Abstract

The synthetic red azo dye Ponceau 4R is an additive with widely utilization in food processing technology. Thermal behavior of the trisodium (8Z)-7-oxo-8-[(4-sulfonatonaphthalen-1-yl)hydrazinylidene] naphthalene-1,3-disulfonate, appointed Ponceau 4R or E124, was studied. Thermal analysis measurements of Ponceau 4R revealed thermal stability until 300 °C. Ponceau 4R is an anisotropic crystalline dye that has the property of birefringence. The THz spectroscopy allowed the determination of the characteristic absorption frequencies of this colorant and its identification in any food. In the THz spectrum of Ponceau 4R, it can be seen that the strongest absorption is produced for the radiation with frequency of 1.41, 1.74 and 3.81 THz. THz spectroscopy of Ponceau 4R identified spectral “signatures” of azo food dye studied, which were obtained by the processing of the numerical data of THz spectroscopy.

Keywords

Azoic red food dye Ponceau 4R Thermal stability Optical anisotropy THz spectroscopy 

Notes

References

  1. 1.
    König J. Food colour additives of synthetic origin. Colour additives for foods and beverages. Cambridge: Woodhead Publishing; 2015.Google Scholar
  2. 2.
    EFSA Panel on Food Additives and Nutrient Sources added to Food. Scientific Opinion on the reevaluation of Ponceau 4R (E 124) as a food additive on request from the European Commission. EFSA J. 2009;7(11):1328.Google Scholar
  3. 3.
    EFSA (European Food Safety Authority). Refined exposure assessment for Ponceau 4R (E 124). EFSA J. 2015;13(4):4073.Google Scholar
  4. 4.
    Pagáčiková D, Lehotay J. Determination of synthetic colors in meat products using high-performance liquid chromatography with photodiode array detector. J Liq Chromatogr Relat Technol. 2015;38:579–83.Google Scholar
  5. 5.
    Turak F, Ozgur MU. Simultaneous determination of Allura Red and Ponceau 4R in drinks with the use of four derivative spectrophotometric methods and comparison with high-performance liquid chromatography. J AOAC Int. 2013;96(6):1377.PubMedGoogle Scholar
  6. 6.
    Rotaru A, Bratulescu G, Rotaru P. Thermal analysis of azoic dyes: part I. Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489:63–9.Google Scholar
  7. 7.
    Moanta A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl) oxy]-3, 4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102:1079–86.Google Scholar
  8. 8.
    Rotaru A, Constantinescu C, Rotaru P, Moanţă A, Dumitru M, Socaciu M, Dinescu M, Segal E. Thermal analysis and thin films deposition by matrix assisted pulsed laser evaporation of a 4CN type azomonoether. J Therm Anal Calorim. 2008;92:279–84.Google Scholar
  9. 9.
    Gur M, Kocaokutgen H, Tas M. Synthesis, spectral, and thermal characterisations of some azo-ester derivatives containing a 4-acryloyloxy group. Dyes Pigments. 2007;72(1):101–8.Google Scholar
  10. 10.
    Vlase T, Vlase G, Modra D, Doca N. Thermal behaviour of some industrial and food dyes. J Therm Anal Calorim. 2007;88:389–93.Google Scholar
  11. 11.
    Vlase L, Muntean D, Cobzac SC, Filip L. Development and validation of an HPLC-UV method for determination of synthetic food colorants. Rev Roum Chim. 2014;59(9):719–25.Google Scholar
  12. 12.
    Mazdeh FZ, Khorrami AR, Khatoonabadi ZM, Aftabdari FE, Ardekani MRS, Moghaddam G, Hajimahmoodi M. Determination of 8 synthetic food dyes by solid phase extraction and reversed-phase high performance liquid chromatography. Trop J Pharm Res. 2016;15(1):173–81.Google Scholar
  13. 13.
    Constantinescu C, Morintale E, Emandi A, Dinescu M, Rotaru P. Thermal and microstructural analysis of Cu(II) 2,20-dihydroxy azobenzene and thin films deposition by MAPLE technique. J Therm Anal Calorim. 2011;104:707–16.Google Scholar
  14. 14.
    Moanta A, Ionescu C, Dragoi M, Tutunaru B, Rotaru P. A new azo-ester: 4-(phenyldiazenyl)phenyl benzene sulfonate—spectral, thermal, and electrochemical behavior and its antimicrobial activity. J Therm Anal Calorim. 2015;120:1151–61.Google Scholar
  15. 15.
    Rotaru A, Moanta A, Constantinescu C, Dumitru M, Manolea HO, Andrei A, Dinescu M. Thermokinetic study of CODA azoic liquid crystal and thin films deposition by matrix-assisted pulsed laser evaporation. J Therm Anal Calorim. 2017;128:89–105.Google Scholar
  16. 16.
    Leulescu M, Rotaru A, Palarie I, Moanta A, Cioatera N, Popescu M, Morintale E, Bubulica MV, Florian G, Harabor A, Rotaru P. Tartrazine: physical, thermal and biophysical properties of the most widely employed synthetic yellow food-coloring azo dye. J Therm Anal Calorim. 2018;134(1):209–31.Google Scholar
  17. 17.
    Leulescu M, Palarie I, Moanta A, Morintale E, Varut MC, Rotaru P, Brown HT. Physical thermal and biophysical properties of the food azo dye. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-018-7766-x.CrossRefGoogle Scholar
  18. 18.
    Rotaru A, Jurca B, Moanta A, Salageanu I, Segal E. Kinetic study of the thermal decomposition of some aromatic ortho-chlorinated azomonoethers 1 Decomposition of 4-[(2-chlorobenzyl)oxi]-4′-triflouromethyl-azobenzene. Rev Roum Chim. 2006;51:373–8.Google Scholar
  19. 19.
    Moanta A, Samide A, Rotaru P, Ionescu C, Tutunaru B. Synthesis and characterization of novel furoate azodye using spectral and thermal methods of analysis. J Therm Anal Calorim. 2015;119:1039–45.Google Scholar
  20. 20.
    Rotaru A, Dumitru M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J Therm Anal Calorim. 2017;127:21–32.Google Scholar
  21. 21.
    Rotaru A, Moanta A (2016) Azoic dyes: from thermal properties to a wide range of applications. Chapter 4 in: Advanced Engineering Materials. Recent Developments for Medical, Technological and Industrial Applications, Academica Greifswald, 978-3-940237-38-5.Google Scholar
  22. 22.
    Rotaru A, Gosa M, Segal E. Isoconversional liniar integral kinetics of the non-isothermal evaporation of 4-[(4-chlorobenzyl)oxy]-4′-trifluoromethyl-azobenzene. Stud Univ Babes-Bolyai, Chem. 2011;54:185–92.Google Scholar
  23. 23.
    Rotaru A, Moanta A, Salageanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part I. Decomposition of 4-[(4-chlorobenzyl)oxy]-4′-nitro-azobenzene. J Therm Anal Calorim. 2007;87:395–400.Google Scholar
  24. 24.
    Rotaru A, Kropidlowska A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part II. Non-isothermal study of three liquid crystals in dynamic air atmosphere. J Therm Anal Calorim. 2008;92:233–8.Google Scholar
  25. 25.
    Rotaru A, Moanta A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloroazobenzene in dynamic air atmosphere. J Therm Anal Calorim. 2009;95:161–6.Google Scholar
  26. 26.
    Rotaru A, Moanta A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part IV. Non-isothermal kinetics of 2-allyl-4-((4-(4-methylbenzyloxy) phenyl) diazenyl)phenol in air flow. J Therm Anal Calorim. 2009;97:485–91.Google Scholar
  27. 27.
    Massaro M, Coletti CG, Lazzara G, Guernelli S, Noto R, Riela S. Synthesis and characterization of halloysite-cyclodextrin nanosponges for enhanced dyes adsorption. ACS Sustain Chem Eng. 2017;5(4):3346–52.Google Scholar
  28. 28.
    Wang S, Shen S, Xu H. Synthesis, spectroscopic and thermal properties of a series of azo metal chelate dyes. Dyes Pigments. 2000;44(3):195–8.Google Scholar
  29. 29.
    Qiu J, Tang B, Ju B, Xu Y, Zhang S. Stable diazonium salts of weakly basic amines—convenient reagents for synthesis of disperse azo dyes. Dyes Pigments. 2017;136:63–9.Google Scholar
  30. 30.
    Nejati K, Rezvani Z, Seyedahmadian M. The synthesis, characterization, thermal and optical properties of copper, nickel, and vanadyl complexes derived from azo dyes. Dyes Pigments. 2009;83(3):304–11.Google Scholar
  31. 31.
    Suzuki Y, Horie M, Okamoto Y, Kurose Y, Maeda S. Thermal and optical properties of metal azo dyes for digital video disc-recordable discs. Jpn J Appl Phys. 1998;37(1):2084.Google Scholar
  32. 32.
    El-Sonbati AZ, Diab MA, El-Bindary AA, Shoair AF, Hussein MA, El-Boz RA. Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes. J Mol Struct. 2017;1141:186–203.Google Scholar
  33. 33.
    Mallikarjuna NM, Keshavayya J, Maliyappa MR, Shoukat Ali RA, Venkatesh T. Synthesis, characterization, thermal and biological evaluation of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing sulfamethaxazole moiety. J Mol Struct. 2018;1165:28–36.Google Scholar
  34. 34.
    Fioru L, Langfeld HW, Tarabasanu-Mihaila C. Coloranti azoici. Bucharest: Editura Tehnica; 1981.Google Scholar
  35. 35.
    Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. OJ L 354, 31.12.2008.Google Scholar
  36. 36.
    Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. OJ L 295, 12.11.2011.Google Scholar
  37. 37.
    Shen Y-C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm. 2011;417:48–60.PubMedGoogle Scholar
  38. 38.
    Zhong S, Shen Y-C, Ho L, Mayd RK, Zeitler JA, Evans M, Taday PF, Pepper M, Rades T, Gordon KC, Müller R, Kleinebudde P. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Optic Lasers Eng. 2011;49:361–5.Google Scholar
  39. 39.
    Lin H, Dong Y, Shen Y, Zeitler JA. Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation. New York: Wiley; 2015.Google Scholar
  40. 40.
    Zeitler JA, Shen Y, Baker C, Taday PF, Pepper M, Rades T. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. New York: Wiley; 2006.Google Scholar
  41. 41.
    Gowen AA, O’Sullivan C, O’Donnell CP. Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci Technol. 2012;25:40–6.Google Scholar
  42. 42.
    Parrott EPJ, Sun Y, Pickwell-MacPherson E. Terahertz spectroscopy: its future role in medical diagnoses. J Mol Struct. 2011;1006:66–76.Google Scholar
  43. 43.
    Sasaki Tomoyuki, Ono Hiroshi, Kawatsuki Nobuhiro. Anisotropic photonic structures induced by three-dimensional vector holography in dye doped -liquid crystals. J Appl Phys. 2008;104:043524.Google Scholar
  44. 44.
    Priimagi A, Kaivola M. Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference. Appl Phys Lett. 2007;90:121103.Google Scholar
  45. 45.
    Mendonca CR, Baldacchini T, Tayalia P, Mazur E. Reversible birefringence in microstructures fabricated by two-proton absorption polymerization. J Appl Phys. 2007;102:013109.Google Scholar
  46. 46.
    Moanta A. Organic chemistry and pollution. Craiova: SITECH Publishing House; 2009. p. 78–86.Google Scholar
  47. 47.
    Class Names and the International Numbering System for food additives CAC/GL 36–1989. Codex Alimentarius FAO/WHO (2017).Google Scholar
  48. 48.
  49. 49.
  50. 50.
    Jianu D, Soare B, Matei L. Proprietăţile optice microscopice ale mineralelor transparente, în lumină polarizată. old.unibuc.ro. 2007. Accessed Jun 2018.Google Scholar
  51. 51.
    Bojan M, Damian V, Fleaca C, Vasile T. Terahertz spectroscopic investigations of hazardous substances. In: Proceedings of the SPIE Proc Ser. 2016; Vol. 10010, 6 pp.Google Scholar
  52. 52.
    Strachan CJ, Rades T, Newnham DA, Gordon KC, Pepper M, Taday PF. Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials. Chem Phys Lett. 2004;390:20.Google Scholar
  53. 53.
    Taday PF. Applications of terahertz spectroscopy to pharmaceutical sciences. Philos T R Soc A. 2004;362:351–64.Google Scholar
  54. 54.
    Bernstein J. Polymorphism in molecular crystals. Oxford: Clarendon Press; 2002.Google Scholar
  55. 55.
    Day GM, Zeitler JA, Jones W, Rades T, Taday PF. Understanding the influence of polymorphism on phonon spectra: lattice dynamics calculations and terahertz spectroscopy of carbamazepine. J Phys Chem B. 2006;110:447–56.PubMedGoogle Scholar
  56. 56.
    Qin J, Ying Y, Xie L. The detection of agricultural products and food using terahertz spectroscopy: a review. Appl Spectrosc Rev. 2013;48:439–57.Google Scholar
  57. 57.
    Ok G, Park K, Kim HJ, Chun HS, Choi S-W. High-speed terahertz imaging toward food quality inspection. OSA Appl Opt. 2014;53:1406–12.Google Scholar
  58. 58.
    Plusquellic DF, Siegrist K, Heilweil EJ, Esenturk O. Applications of terahertz spectroscopy in biosystems. Chem Phys Chem. 2007;8:2412–31.PubMedGoogle Scholar
  59. 59.
    Withayachumnankul W, Naftaly M. Fundamentals of measurement in terahertz time-domain spectroscopy. J Infrared Millim TE. 2014;35:610–37.Google Scholar
  60. 60.
    Palka N, et al. Comparison of spectra of materials measured by time domain and fourier transform spectroscopy in terahertz range. Photon Lett Poland. 2011;3:76–8.Google Scholar
  61. 61.
    Liu HB, Chen YQ, Zhang XC. Characterization of anhydrous and hydrated pharmaceutical materials with THz time-domain spectroscopy. J Pharmacol Sci. 2007;96:927–34.Google Scholar
  62. 62.
    Shen J, Wang G, Jiang D, Liang L, Xu X. Terahertz spectroscopic investigations of caffeine and 3-acetylmorphine. Int J Light Electron Opt. 2010;121:1712–6.Google Scholar
  63. 63.
    Nishikiori R, Yamaguchi M, Takano K, Enatsu T, Tani M, de Silva UC, Kawashita N, Taragi T, Morimoto S, Hangyo M, Kawase M. Application of partial least square on quantitative analysis of l-, d-, and dl-tartaric acid by terahertz absorption spectra. Chem Pharm Bull. 2008;56:305–7.PubMedGoogle Scholar
  64. 64.
    Laman N, Harsha SS, Grischkowsky D. Narrow-line waveguide terahertz time-domain spectroscopy of aspirin and aspirin precursors. Appl Spectrosc. 2008;62:319–26.PubMedGoogle Scholar
  65. 65.
    Newnham DA, Taday PF. Pulsed terahertz attenuated total reflection spectroscopy. Appl Spectrosc. 2008;62:394–8.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesUniversity of CraiovaCraiovaRomania
  2. 2.Laser Department, Plasma and Radiation PhysicsINFLPR –National Institute for LaserBucharestRomania

Personalised recommendations