Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 4, pp 2481–2489 | Cite as

Isotactic polypropylene–1,2,4,5-tetrachlorobenzene: porous bodies via thermally induced phase separation

  • Konstantin V. Pochivalov
  • Andrey V. Basko
  • Yulia I. Denisova
  • Georgiy A. Shandryuk
  • Alexander A. Ezhov
  • Vladimir V. Artemov
  • Yaroslav V. KudryavtsevEmail author


Using recently constructed experimental phase diagram isotactic polypropylene–1,2,4,5-tetrachlorobenzene (TeCB), we formulate a physically consistent scenario of the mixture evolution under thermally induced phase separation and predict the morphology of capillary-porous bodies that are formed after cooling down the binary system and removal of the low molecular mass component. This approach allows us to interpret the experimental data obtained by optical microscopy, scanning electron microscopy, and differential scanning calorimetry on the system with two crystallizable components. At any composition, TeCB forms needle-like crystals of nearly square section. Increasing polymer content affects crystal growth by limiting their length and by generating another population of small TeCB crystals of irregular shape and close to log-normal size distribution, located in the amorphous polymer regions. Finite rate of cooling the system leads to a hysteresis, when the values of characteristic temperatures and compositions in the phase diagram appear to be considerably shifted to lower temperatures and higher polymer contents. Combination of structural and calorimetric data provides an opportunity to characterize polymer–solvent systems from both thermodynamic and technological standpoints.


Phase diagram Crystallization DSC Optical microscopy Scanning electron microscopy 



This work was carried out using the equipment of Shared Research Centers of TIPS RAS and FSRC “Crystallography and Photonics” RAS. It was supported by the Ministry of Science and Higher Education of Russia within the State Assignment of ISC RAS, TIPS RAS, and FSRC “Crystallography and Photonics” RAS.


  1. 1.
    Lloyd DR, Kim SS, Kinzer KE. Microporous membrane formation via thermally-induced phase separation. II. Liquid—liquid phase separation. J Membr Sci. 1991;64:1–11.CrossRefGoogle Scholar
  2. 2.
    Lloyd DR, Kinzer KE, Tseng HS. Microporous membrane formation via thermally-induced phase separation. I. Solid—liquid phase separation. J Membr Sci. 1990;52:239–61.CrossRefGoogle Scholar
  3. 3.
    Kim SS, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes. J Membr Sci. 1991;64:13–29.CrossRefGoogle Scholar
  4. 4.
    Lim GBA, Kim SS, Ye Q, Wang YF, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure. J Membr Sci. 1991;64:31–40.CrossRefGoogle Scholar
  5. 5.
    Kim SS, Lim GBA, Alwattari AA, Wang YF, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. V. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes. J Membr Sci. 1991;64:41–53.CrossRefGoogle Scholar
  6. 6.
    Alwattari AA, Lloyd DR. Microporous membrane formation via thermally-induced phase separation. VI. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane structure. J Membr Sci. 1991;64:55–67.CrossRefGoogle Scholar
  7. 7.
    Guenet J-M. Contributions of phase diagrams to the understanding of organized polymer-solvent systems. Thermochim Acta. 1996;284:67–83.CrossRefGoogle Scholar
  8. 8.
    Smith P, Pennings AJ. Eutectic solidification of the quasi binary system of isotactic polypropylene and pentaerythrityl tetrabromide. J Polym Sci Polym Phys Ed. 1977;15:523–40.CrossRefGoogle Scholar
  9. 9.
    Smith P, Pennings AJ. Eutectic crystallization of pseudo binary systems of polyethylene and high melting diluents. Polymer. 1974;15:413–9.CrossRefGoogle Scholar
  10. 10.
    Wittmann J, Manley R. Polymer–monomer binary mixtures. I. Eutectic and epitaxial crystallization in poly(ε-caprolactone)–trioxane mixtures. J Polym Sci Polym Phys Ed. 1977;15:1089–100.CrossRefGoogle Scholar
  11. 11.
    Mizerovskii LN, Pochivalov KV, Afanas’eva VV. A semicrystalline polymer as a metastable microheterogeneous liquid. Polym Sci Ser A. 2010;52:973–84.CrossRefGoogle Scholar
  12. 12.
    Pochivalov KV, Vyalova AN, Golovanov RY, Mizerovskii LN. On the procedure of constructing phase diagrams of partially crystalline polymer–liquid systems. Russ J Appl Chem. 2012;85:153–5.CrossRefGoogle Scholar
  13. 13.
    Il’yasova AN, Lebedeva TN, Shilov AN, Pochivalov KV. Estimation of the thermodynamic quality of alkylbenzenes with respect to low density polyethylene. Polym Sci Ser A. 2017;59:839–43.CrossRefGoogle Scholar
  14. 14.
    Mizerovskii LN, Lebedeva TN, Pochivalov KV. The phase diagram of the high-density polyethylene-m-xylene system. Polym Sci Ser A. 2015;57:257–60.CrossRefGoogle Scholar
  15. 15.
    Il’yasova AN, Shandryuk GA, Kudryavtsev YV, Lebedeva TN, Lutovac M, Pochivalov KV. Phase equilibria and transformations in low-density polyethylene–p-xylene system. Polym Sci Ser A. 2016;58:1017–24.CrossRefGoogle Scholar
  16. 16.
    Pochivalov KV, Lebedeva TN, Ilyasova AN, Basko AV, Kudryavtsev YV. A new look at the semicrystalline polymer–liquid systems: phase diagrams low-density polyethylene-n-alkanes. Fluid Phase Equilib. 2018;471:1–7.CrossRefGoogle Scholar
  17. 17.
    Mizerovskii LN, Pochivalov KV, Kudryavtsev YV, Lebedeva TN, Golovanov RY, Antina LA. Phase diagrams semicrystalline polymer–liquid revisited: isotactic polypropylene-dibutyl phthalate and other systems. J Macromol Sci B. 2015;54:1001–17.CrossRefGoogle Scholar
  18. 18.
    Pochivalov KV, Kudryavtsev YV, Basko AV, Lebedeva TN, Golovanov RY. Phase diagrams of semicrystalline polymer-crystalline substances: polyolefins–1,2,4,5-tetrachlorobenzene. J Macromol Sci B. 2015;54:1427–37.CrossRefGoogle Scholar
  19. 19.
    Mizerovskii LN, Pochivalov KV, Kudryavtsev YV, Lebedeva TN, Golovanov RY, Antina LA. Phase diagram of the high-density polyethylene–1,2,4,5-tetrachlorobenzene mixture. Polym Sci Ser A. 2015;57:399–403.CrossRefGoogle Scholar
  20. 20.
    Pochivalov KV, Kudryavtsev YV, Lebedeva TN, Antina LA, Ilyasova AN, Yurov MY, Basko AV, Zavadskii AE. Poly[3,3-bis(azidomethyl)oxetane]–2,4-dinitro-2,4-diazapentane: thermal behavior and peculiarities of crystallization. J Therm Anal Calorim. 2018;131:2225–33.CrossRefGoogle Scholar
  21. 21.
    Pochivalov KV, Basko AV, Lebedeva TN, Antina LA, Golovanov RY, Artemov VV, Ezhov AA, Kudryavtsev YV. Low-density polyethylene-thymol: thermal behavior and phase diagram. Thermochim Acta. 2018;659:113–20.CrossRefGoogle Scholar
  22. 22.
    Pochivalov KV, Rozhkova OV, Vyalova AN, Golovanov RY, Barannikov VP, Mizerovskii LN. Investigation of the amorphization process of partially crystalline polymers by hydrostatic weighing in an inert liquid. Fibre Chem. 2011;43:28–31.CrossRefGoogle Scholar
  23. 23.
    Papkov SP. The physico-chemical principles of polymer solutions processing. Moscow: Khimiya; 1971 (In Russian).Google Scholar
  24. 24.
    Yang Z, Li P, Xie L, Wang Z, Wang S-C. Preparation of iPP hollow fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP. Desalination. 2006;1–3:168–81.CrossRefGoogle Scholar
  25. 25.
    Su Y, Chen C, Li Y, Li J. PVDF membrane formation via thermally induced phase separation. J Macromol Sci A. 2007;44:99–104.CrossRefGoogle Scholar
  26. 26.
    Wunderlich B. Macromolecular physics, volume 3—crystal melting. New York: Academic Press; 1980.Google Scholar
  27. 27.
    Berghmans S, Mewis J, Berghmans H, Meijer H. Phase behavior and structure formation in solutions of poly(2,6-dimethyl-1,4-phenylene ether). Polymer. 1995;36:3085–91.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  3. 3.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  5. 5.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations