Advertisement

Ambient atmospheric temperature processed lead halide perovskites

  • Vani Pawar
  • Manish Kumar
  • Priyanka A. Jha
  • S. K. Gupta
  • A. S. K. Sinha
  • Pardeep K. JhaEmail author
  • Prabhakar SinghEmail author
Article
  • 7 Downloads

Abstract

Perovskite, ABX3, materials are usually synthesized in inert atmosphere. Their properties are severely affected by the humidity and temperature of the surroundings which is very far from real-life applications. Hence, in the present work, bulk systems of CH3NH3PbI3 and CsPbI3 processed at ambient temperature and pressure have been investigated for their thermodynamics parameters, structural, optical and electronic features. Simultaneously, an attempt has been made to understand the role of methylammonium ion (CH3NH3+) in lead halide perovskite.

Keywords

Solar cell materials Raman XPS Thermodynamics 

Notes

Acknowledgements

One of the authors MK is also thankful to UGC for JRF.

References

  1. 1.
    Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. 2016;9:1989–97.CrossRefGoogle Scholar
  2. 2.
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, et al. Electron-hole diffusion lengths > 175 um in solution-grown CH3NH3PbI3 single crystals. Sci Express. 2015;347:967–70.Google Scholar
  3. 3.
    Shockley W, Queisser HJ. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys. 1961;32:510–9.CrossRefGoogle Scholar
  4. 4.
    Zhao Y, Nardes AM, Zhu K. Solid-state mesostructured perovskite CH3NH3PbI3 solar cells: charge transport, recombination, and diffusion length. J Phys Chem Lett. 2014;5:490–4.CrossRefGoogle Scholar
  5. 5.
    Wang Z, Shi Z, Li T, Chen Y, Huang W. Stability of Perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angew Chem Int Ed. 2016;55:2–25.CrossRefGoogle Scholar
  6. 6.
    Motta C, El Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S. Revealing the role of organic cations in hybrid halide perovskites CH3NH3PbI3. Nat Commun. 2014;6:1–7.Google Scholar
  7. 7.
    Zhao L, Kerner RA, Xiao Z, Lin YL, Lee KM, Schwartz J, et al. Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 2016;1:595–602.CrossRefGoogle Scholar
  8. 8.
    Chen H. Two-step sequential deposition of organometal halide perovskite for photovoltaic application. Adv Funct Mater. 2017;27:1605654.CrossRefGoogle Scholar
  9. 9.
    Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics. 2014;8:133–8.CrossRefGoogle Scholar
  10. 10.
    Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitized solar cell applications. J Mater Chem A. 2013;1:5628.CrossRefGoogle Scholar
  11. 11.
    Pourmortazavi SM, Mirzajani V, Farhadi K. Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim. 2018;137:93–104.CrossRefGoogle Scholar
  12. 12.
    Zhang L, Cheng Y, Ji G. Thermodynamic and optical properties of CuAlO2 under pressure from first principle. J Wuhan Univ Technol Mater Sci Ed. 2015;30:1338–44.CrossRefGoogle Scholar
  13. 13.
    Di Xue B, Yang Q, Chen SP, Gao SL. Synthesis, crystal structure, and thermodynamics of a high-nitrogen copper complex with N,N-bis-(1(2)H-tetrazol-5-yl) amine. J Therm Anal Calorim. 2010;101:997–1002.CrossRefGoogle Scholar
  14. 14.
    Wu X, Wu W, Li S, Cui X, Liao S. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim. 2011;103:805–12.CrossRefGoogle Scholar
  15. 15.
    Chen SP, Li N, Wei Q, Gao SL. Synthesis, structure analysis and thermodynamics of [Ni(H2O)4(TO)2](NO3)2·2H2O (TO = 1,2,4-triazole-5-one). J Therm Anal Calorim. 2010;100:1115–20.CrossRefGoogle Scholar
  16. 16.
    Pawar V, Kumar M, Jha PA, Gupta SK, Jha PK, Singh P. Cs/MAPbI3 composite formation and its influence on optical properties. J Alloys Compd. 2019;783:935–42.CrossRefGoogle Scholar
  17. 17.
    Liang Z, Zhang S, Xu X, Wang N, Wang J, Wang X, et al. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 2015;5:60562–9.CrossRefGoogle Scholar
  18. 18.
    Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull. 1968;3:37–46.CrossRefGoogle Scholar
  19. 19.
    Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous Germanium. Phys Status Solidi B. 1966;15:627.CrossRefGoogle Scholar
  20. 20.
    Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953;92:1324.CrossRefGoogle Scholar
  21. 21.
    Pawar V, Jha PK, Panda SK, Jha PA, Singh P. Band-gap engineering in ZnO thin films: a combined experimental and theoretical study. Phys Rev Appl. 2018;9:54001.CrossRefGoogle Scholar
  22. 22.
    Portier J, Hilal HS, Saadeddin I, Hwang SJ, Subramanian MA, Campet G. Thermodynamic correlations and band gap calculations in metal oxides. Prog Solid State Chem. 2004;32:207–17.CrossRefGoogle Scholar
  23. 23.
    Subramanian MA, Kwon CW, Etourneau J, Campet G, Portier J. Relationships between optical band gap and thermodynamic properties of binary oxides. Int J Inorg Mater. 2002;3:1091–4.Google Scholar
  24. 24.
    Kumar M, Pawar V, Jha PA, Gupta SK, Sinha ASK, Jha PK, et al. Thermo-optical correlation for room temperature synthesis: cold-sintered lead halides. J Mater Sci Mater Electron. 2019;30:6071–81.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology (Banaras Hindu University) VaranasiVaranasiIndia
  2. 2.Department of PhysicsBanasthali VidyapeethBanasthaliIndia
  3. 3.Department of Chemical Engineering and TechnologyIndian Institute of Technology (Banaras Hindu University) VaranasiVaranasiIndia

Personalised recommendations