Thermal characterization of granular sludges from biologic treatments and its application to the generation of biogas

  • S. AlmeidaEmail author
  • E. F. Horta
  • M. C. A. A. Castro
  • M. S. Crespi
  • S. I. Maintinguer


The application of granular sludge from biological treatment plants can become an economically and environmentally viable process as a renewable source of energy. It is available in most countries, and its application can diversify the local energy potential. However, in order to achieve such benefits and make possible the development of more efficient conversion processes, prior knowledge of the composition of these materials is essential. In this sense, samples of granular sludge were obtained from upflow anaerobic sludge blanket reactors for the treatment of: (1) poultry slaughterhouse waste (Tietê—SP); (2) poultry slaughterhouse waste (Pereiras—SP); (3) wastewater treatment plant (São Carlos—SP) and (4) a mix of sludges 1, 2 and 3. Biogas generation tests in anaerobic batch reactors fed with sodium acetate and glucose separately as carbon sources were performed with samples 1, 2, 3 and 4, at initial pH 7.0 and 30 °C. Characteristic decomposition profiles were observed in the granular sludge tested. The two poultry slaughterhouse waste (samples 1 and 2) presented higher proportions of organic substrate molecules for the methanogenesis than the sanitary sewage sludge (sample 3), thus facilitating the production of the highest biogas, as verified in the tests carried out. The thermal characterization of the samples was relevant to the methane generation tests demonstrating the potential for the generation of this fuel.


Biogas Methane Organic matter Thermal stability Granular sludge 



  1. 1.
    Das D, Veziroglu TN. Hidrogen production by biogical process: a survey of literature. Int J Hydrogen Energy. 2001;26:13–28.CrossRefGoogle Scholar
  2. 2.
    Oliver APM, Neto AAS, Quadros DG, Valladares RE. Manual de Treinamento em Biodigestão. Salvador: Winrock International Brasil; 2008.Google Scholar
  3. 3.
    Yasmin JAA, Gupta HN, Bansal BB, Srivastava ON. Effect of combustion duration on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel. Int J Hydrogen Energy. 2000;25:581–9.CrossRefGoogle Scholar
  4. 4.
    Lamaison F, Reginatto V, Amantee R, Antônior V. International Workshop: Advances in Cleaner Production. Produção de Biocombustíveis a Partir da Água Residuária do Processamento da Mandioca. 2 sn. 2009.Google Scholar
  5. 5.
    Agência Nacional de Petróleo Gás Natural e Biocombustíveis, ANP, 2015. Resolution no 8. 2015. Accessed 05 Sept 2018.
  6. 6.
    Bartacek J, Zabranska J, Lens PNL. Developments and constraints in fermentative hydrogen production. Biofuel Bioprod Bior. 2007;1:201–14.CrossRefGoogle Scholar
  7. 7.
    Wang J, Wan W. Factor influencing fermentative hydrogen production: a review. Int J Hydrogen Energy. 2009;34:799–811.CrossRefGoogle Scholar
  8. 8.
    Brack, LB. Determinação da Atividade Metanogênica Específica (AME) Através da Biodigestão Anaeróbia de Materiais Colagênicos Accessed 30 July 2018.
  9. 9.
    Andreoli CV, Sperling M. V. Fernandes F. Lodo de esgotos: tratamento e disposição Companhia de Saneamento do Paraná. Editor. Princípios do tratamento biológico de águas residuárias. Belo Horizonte. 2001. vol. 6, pp. 310–315.Google Scholar
  10. 10.
    Maintinguer SI, Sakamoto IK, Adorno MAT, Varesche MBA. Bacterial diversity from environmental sample applied to bio-hydrogen production. Int J Hydrogen Energy. 2015;40:3180–90.CrossRefGoogle Scholar
  11. 11.
    Torquato LDM, Almeida S, Oliveira JE, Crespi MS, Maintinguer SI. Thermal caracterization of anerobic sludges from wastewater treatments applied to biological generation of H2. J Therm Anal Calorim. 2017;127:1267–75.CrossRefGoogle Scholar
  12. 12.
    Férnandes JM, Plaza C, Polo A, Plante AF. Use of thermal analysis technics (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application. Waste Manage. 2012;32(1):158–64.CrossRefGoogle Scholar
  13. 13.
    Baffi C, Dell’Abate MT, Nassisi A, Silva S, Benedetti A, Genevini PL, Adani F. Determination of biological stability in compost: a comparison of methodologies. Soil Biol Biochem. 2007;39(6):1284–93.CrossRefGoogle Scholar
  14. 14.
    Smidt E, Lechner P. Study on the degradation and stabilization of organic matter in waste by means of thermal analyses. Thermochim Acta. 2005;438(1–2):22–8.CrossRefGoogle Scholar
  15. 15.
    Pietro M, Paola C. Thermal analysis for the evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim Acta. 2004;413(1–2):209–14.CrossRefGoogle Scholar
  16. 16.
    Gomez X, Cuetos MJ, Garcia AI, Moran A. An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. J Hazard Mater. 2007;149(1):97–105.CrossRefGoogle Scholar
  17. 17.
    Castaldi P, Alberti G, Merella R, Melis P. Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Manage. 2005;25(2):209–13.CrossRefGoogle Scholar
  18. 18.
    Dias DS, Crespi MS, Torquato LDM, Kobelnik M, Ribeiro CA. Torrefied banana tree fiber pellets having embedded urea for agricultural use. J Therm Anal Calorim. 2017;45:50. Scholar
  19. 19.
    Nozela WC, Braz CEM, Almeida S, Ribeiro CA, Crespi MS. Mixture of biomass to energy reuse. J Therm Anal Calorim. 2017. Scholar
  20. 20.
    Aquino SF, Chernicharo CAL, Foresti E, Santos MLF, Monteggia LO. Metodologias para determinação da Atividade Metanogênica Específica (AME) em Lodos Anaeróbios. Eng Sanit Ambient. 2007;12(2):192–201.CrossRefGoogle Scholar
  21. 21.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Calorimetric method for determination of sugar and related substances. Anal Chem. 1956;28:350–6.CrossRefGoogle Scholar
  22. 22.
    Herbert D, Philipps Omolo S, Strang RE. Carbohydrate analysis. Methods Enzymol. 1971;5B:265–77.Google Scholar
  23. 23.
    APHA-AWWA-WEF. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC, USA: American Public Health Association, American Water Works Association, Water Environmental Federation. 2005. Accessed 20 July 2018.
  24. 24.
    DSM–Scientific Services of Culture Collections. Curso Ministrado na Fundação Tropical de Pesquisas e Tecnologia Andre´ Tosello, Campinas; 1991.Google Scholar
  25. 25.
    Silva AR, Crespi MS, Ribeiro CA, Oliveira SC, Silva MRS. kinetic of thermal decomposition of residues from different kinds of composting. J Therm Anal Calorim. 2004;75:401–9.CrossRefGoogle Scholar
  26. 26.
    Lima EN, Crespi MS, Ribeiro CA, Almeida S. Non-isothermal kinetic for lyophilized leachate from sanitary landfill and composting usine. J Therm Anal Calorim. 2007;90:823–6.CrossRefGoogle Scholar
  27. 27.
    Almeida S, Lima EM, Crespi MS, Ribeiro CA, Scalch V. kinetic studies of urban solid residues and leachate from sanitary landfill. J Therm Anal Calorim. 2009;97:529–33.CrossRefGoogle Scholar
  28. 28.
    Silva HLB. Uso de membranas microporosas no tratamento de efluentes de um frigorífico de abate de aves. Universidade Federal de Santa Catarina. Florianópolis. 2005. Accessed 21 Aug 2018.
  29. 29.
    Capana AS, Martins QV, Crespi MS, Ribeiro CA, Barud HS. Thermal behavior of residues (sludge) originated from Araraquara water and sewage treatment station. J Therm Anal Calorim. 2009;97:601–4.CrossRefGoogle Scholar
  30. 30.
    Nozela WC, Nozela CFV, Silva FR, Dias DS, Almeida S, Ribeiro CA. Kinetic study of the energetic reuse from torrefied sewage sludge and urban pruning blends. J Therm Anal Calorim. 2018;45:50. Scholar
  31. 31.
    Brok TD, Madigan MT, Martiko JM, Parker J. Biology of microrganisms. New Jersey: Prentice Hall; 1994.Google Scholar
  32. 32.
    Zaher U, Cheong DY, Wu B, Chen S. Producing energy and fertilizer from organic municipal solid waste. Department of Biological Systems Engineering. Washington State University. Ecology Publication no 07-07-024; 2007. 30 July 2018.
  33. 33.
    Monteggia LO. Congresso Brasileiro de Engenharia Sanitária e Ambiental. Proposta de Metodologia para Avaliação do Parâmetro: Atividade Metanogênica Específica. 19th ed. 1997. Eng. Sanit. Ambient.Google Scholar
  34. 34.
    Sganzerla GS. Avaliação da Atividade Microbiana Anaeróbia Submetida a Substratos Preferenciais. Universidade Federal de Santa Catarina. Centro Tecnológico. Curso de Graduação em Engenharia Sanitária e Ambiental. Florianópolis, (SC). 2013.Google Scholar
  35. 35.
    Khan MD, Khan N, Nizami A-S, Rehan M, Suhail S. Effect of co-substrates on biogas production and anaerobic decomposition of pentachlorophenol. Bioresour Technol. 2017;238:492–501.CrossRefGoogle Scholar
  36. 36.
    Xing L, Yang S, Yin Q, Xie S, Strong PJ, Wu G. Effects of carbon source on methanogenic activities and pathways incorporating metagenomic analysis of microbial community. Bioresour Technol. 2017;244:982–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Institute of ChemistrySão Paulo State UniversityAraraquaraBrazil
  2. 2.Geosciences and Exact SciencesSão Paulo State UniversityAraraquaraBrazil
  3. 3.Research Institute for BioenergySão Paulo State UniversityAraraquaraBrazil
  4. 4.Uniara - University of AraraquaraAraraquaraBrazil

Personalised recommendations