Thermal analysis, synthesis and structural studies of heterometallic {Fe2MO} salicylate complexes

  • Viorina GorinchoyEmail author
  • Olesea Cuzan-Munteanu
  • Oleg Petuhov
  • Elena Melnic
  • Victor Ch. Kravtsov
  • Sergiu Shova


Four new trinuclear heterometallic molecular complexes with the {Fe 2 III MII μ3-O} core, where M = Mn(II), Ni(II), Cu(II) and Zn(II), have been synthesized by the reaction between iron nitrate and d-metal salts with ammonium salicylate in a mixture of solvents. The compounds were obtained as crystalline material suitable for single-crystal structure analysis with the following composition: [Fe2MnO(SalH)6(EtOH)(MeOH)2]·DMAA·EtOH·2MeOH·H2O (1); [Fe2NiO(SalH)6(EtOH)(MeOH)2]⋅DMAA⋅2MeOH⋅1.5H2O (2); [Fe2CuO(SalH)6(EtOH)(MeOH)2]⋅DMAA⋅4H2O (3); [Fe2ZnO(SalH)6(EtOH)(MeOH)2]⋅DMF⋅2MeOH⋅1.5H2O (4), where SalH = monodeprotonated salicylic ligand. The elemental analysis and IR spectra of the complexes 1–4 are in good agreement with the crystallographic data. The Mössbauer parameters are characteristic to iron(III) complexes with a spin value of S = 5/2. The thermal properties of all compounds have been studied in air and nitrogen atmosphere at the 20–1000 °C temperature range. The thermal analysis data revealed that after the elimination of external solvent molecules, the trinuclear core of the complexes is stable up to 250 °C.


Heterotrinuclear μ3-oxo coordination complexes X-ray IR analysis Mössbauer spectra TG analysis 



This work was realized under the supervision of Prof. Constantin TURTA (20.12.1940–23.03.2015).


  1. 1.
    Liu Y, Eubank JF, Cairns AJ, Eckert J, Kravtsov VC, Luebke R, et al. Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew Chem Int Ed. 2007;46:3278–83.CrossRefGoogle Scholar
  2. 2.
    Iacob M, Racles C, Tugui C, Stiubianu G, Bele A, Sacarescu L, et al. From iron coordination compounds to metal oxide nanoparticles. Beilstein J Nanotechnol. 2016;7:2074–87.CrossRefGoogle Scholar
  3. 3.
    Turta C, Melnic S, Prodius D, Macaev F, Stoeckli-Evans H, Ruiz P, et al. Sunflower oil coating on the nanoparticles of iron(III) oxides. Inorg Chem Commun. 2010;13:1402–5.CrossRefGoogle Scholar
  4. 4.
    Prodius D, Macaev F, Mereacre V, Shova S, Lutsenco Y, Styngach E, et al. Synthesis and characterization of Fe2CuO clusters as precursors for nanosized catalytic system for Biginelli reaction. Inorg Chem Commun. 2009;12:642–5.CrossRefGoogle Scholar
  5. 5.
    Melnic S, Prodius D, Stoeckli-Evans H, Shova S, Turta C. Synthesis and anti-tuberculosis activity of new hetero(Mn Co, Ni)trinuclear iron(III) furoates. Eur J Med Chem. 2010;45:1465–9.CrossRefGoogle Scholar
  6. 6.
    Melnic S, Prodius D, Simmons C, Zosim L, Chiriac T, Bulimaga V, et al. Biotechnological application of homo- and heterotrinuclear iron(III) furoates for cultivation of iron-enriched Spirulina. Inorg Chim Acta. 2011;373:167–72.CrossRefGoogle Scholar
  7. 7.
    Cannon RD, White RP. Chemical and physical properties of triangular bridged metal complexes. In: Lippard SJ, editor. Progress in inorganic chemistry. Hoboken: Wiley; 2007. p. 195–298.CrossRefGoogle Scholar
  8. 8.
    Turta C, Melnic S, Bettinelli M, Shova S, Benelli C, Speghini A, et al. Synthesis, crystal structure, magnetic and luminescence investigations of new 2Ln3+–Sr2+ heteronuclear polymers with 2-furoic acid. Inorg Chim Acta. 2007;360:3047–54.CrossRefGoogle Scholar
  9. 9.
    Oh SM, Hendrickson DN, Hassett KL, Davis RE. Electron transfer in mixed-valence, oxo-centered, trinuclear iron acetate complexes: effect of statically disordered to dynamically disordered transformation in the solid state. J Am Chem Soc. 1984;106:7984–5.CrossRefGoogle Scholar
  10. 10.
    Long GJ, Robinson WT, Tappmeyer WP, Bridges DL. The magnetic, electronic, and Mössbauer spectral properties of several trinuclear iron(III) carboxylate complexes. J Chem Soc Dalton Trans. 1973;6:573–9.CrossRefGoogle Scholar
  11. 11.
    Gorinchoy V, Shova S, Melnic E, Kravtsov V, Turta C. Homotrinuclear Fe3III μ-oxo salicylate cluster synthesis, structure and properties. Chem J Mold. 2013;8:83–9.CrossRefGoogle Scholar
  12. 12.
    Hayat S, Ahmad A, editors. Salicylic acid: a plant hormone. Dordrecht: Springer; 2007.Google Scholar
  13. 13.
    Supapvanich S, Promyou S. Efficiency of salicylic acid application on postharvest perishable crops. In: Hayat S, Ahmad A, Alyemeni MN, editors. Salicylic acid. Dordrecht: Springer; 2013. p. 339–55.CrossRefGoogle Scholar
  14. 14.
    Holm RH, Kennepohl P, Solomon EI. Structural and functional aspects of metal sites in biology. Chem Rev. 1996;96:2239–314.CrossRefGoogle Scholar
  15. 15.
    Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic acid biosynthesis and metabolism. Arabidopsis Book. 2011;9:e0156.CrossRefGoogle Scholar
  16. 16.
    Praveen DK, Madhavi D, Anil Kumar K, Kranthi Kumar Y. Coordination chemistry of salicylic acid. Int J Eng Sci Invent. 2016;5:8–10.CrossRefGoogle Scholar
  17. 17.
    Koksharova TV, Kurando SV, Stoyanova IV. Coordination compounds of 3d-metals salicylates with thiosemicarbazide. Russ J Gen Chem. 2012;82:1481–4.CrossRefGoogle Scholar
  18. 18.
    Rissanen K, Valkonen J, Kokkonen P, Leskelä M, Niinistö L. Structural and thermal studies on salicylato complexes of divalent manganese, nickel, copper and zinc. Acta Chem Scand. 1987;41a:299–309.CrossRefGoogle Scholar
  19. 19.
    Kuppusamy K, Govindarajan S. Synthesis, spectral and thermal studies of some 3d-metal hydroxybenzoate hydrazinate complexes. Thermochim Acta. 1996;274:125–38.CrossRefGoogle Scholar
  20. 20.
    Lajunen LHJ, Kokkonen P. Solid state decomposition studies of some metal(II)salicylato complexes. Thermochim Acta. 1985;85:55–8.CrossRefGoogle Scholar
  21. 21.
    Kokkonen P, Lajunen LHJ, Jaakkola A, Nissi A. Solid-state decomposition studies on 5-substituted salicylates. Kinetics of the isothermal decomposition of hydrated copper(II) 5-substituted salicylates. Thermochim Acta. 1984;76:229–35.CrossRefGoogle Scholar
  22. 22.
    Lajunen LHJ, Kokkonen P, Nissi A, Ruotsalainen H. Thermal decomposition of hydrated copper(II) 5-substituted salicylates. Thermochim Acta. 1984;72:219–24.CrossRefGoogle Scholar
  23. 23.
    Department of Chemistry, Benue State University, Makurdi, Yiase SG, Adejo SO, Gbertyo JA, Edeh J. Synthesis, characterization and antimicrobial studies of salicylic acid complexes of some transition metals. IOSR J Appl Chem. 2014;7:4–5.Google Scholar
  24. 24.
    Deacon GB, Forsyth CM, Behrsing T, Konstas K, Forsyth M. Heterometallic CeIII–FeIII–salicylate networks: models for corrosion mitigation of steel surfaces by the ‘Green’ inhibitor, Ce(salicylate)3. Chem Commun. 2002;23:2820–1.CrossRefGoogle Scholar
  25. 25.
    Mukherjee S, Lan Y, Novitchi G, Kostakis GE, Anson CE, Powell AK. Syntheses, structures and magnetic studies of three heterometallic Fe2Ln 1D coordination polymers. Polyhedron. 2009;28:1782–7.CrossRefGoogle Scholar
  26. 26.
    Gorinchoi VV, Turte KI, Simonov YA, Shova SG, Lipkovskii Y, Shofranskii VN. Heteronuclear Fe–Ba, Fe–Sr salicylate complexes. Synthesis, structure, and physicochemical properties. Russ J Coord Chem. 2009;35:279–85.CrossRefGoogle Scholar
  27. 27.
    Gorinchoy VV, Zubareva VE, Shova SG, Szafranski VN, Lipkowski J, Stanica N, et al. Homo- and heteronuclear iron complexes Fe2MO with salicylic acid: synthesis, structures, and physicochemical properties. Russ J Coord Chem. 2009;35:731–9.CrossRefGoogle Scholar
  28. 28.
    Gorinchoy V, Zubareva V, Melnic E, Kravtsov V. Heterotrinuclear [Fe2IIINiII]-µ3-oxo-cluster based on salicylic acid. Synthesis, structure and physico-chemical properties. Chem J Mold. 2018;13:46–53.CrossRefGoogle Scholar
  29. 29.
    Agilent Technologies, CrysAlis PRO (Version, Agilent Technologies, Yarnton. 2014.Google Scholar
  30. 30.
    Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A Found Crystallogr. 2008;64:112–22.CrossRefGoogle Scholar
  31. 31.
    Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;71:3–8.CrossRefGoogle Scholar
  32. 32.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. J Appl Crystallogr. 2006;39:453–7.CrossRefGoogle Scholar
  33. 33.
    Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystallogr. 2003;36:7–13.CrossRefGoogle Scholar
  34. 34.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 6th ed. Hoboken: Wiley; 2009.Google Scholar
  35. 35.
    Lewandowski W, Janowski A. Effect of ionic potentials of metals on perturbation of the aromatic system of benzoic acid. J Mol Struct. 1988;174:201–6.CrossRefGoogle Scholar
  36. 36.
    Calu L, Badea M, Čelan Korošin N, Chifiriuc MC, Bleotu C, Stanică N, et al. Spectral, thermal and biological characterization of complexes with a Schiff base bearing triazole moiety as potential antimicrobial species. J Therm Anal Calorim. 2018;134:1839–50. CrossRefGoogle Scholar
  37. 37.
    Goldanskii VI, Herber RH. Chemical applications of Mössbauer spectroscopy. New York: Academic Press; 1968.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of ChemistryChisinăuRepublic of Moldova
  2. 2.Institute of Applied PhysicsChisinăuRepublic of Moldova
  3. 3.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations