Advertisement

Nanoparticles for water desalination in solar heat exchanger

  • Mohadeseh Seyednezhad
  • M. Sheikholeslami
  • Jagar A. Ali
  • Ahmad ShafeeEmail author
  • Truong Khang Nguyen
Article
  • 29 Downloads

Abstract

Producing potable water is a critical issue due to the lack of access to clean H2O and the increasing demands of environment. One of the main technologies for water purification is solar still using the sustainable and green source of energy. To augment the efficiency of solar unit, nanoparticles are combined with the saline water. Nanofluids are suspended materials that besides the different geometries (single slope, double slope, tubular…) of the solar stills have a significant impact on improvement of the thermal conductivity of the brackish H2O. Further, combining nanomaterial with solar energy system appears to be more cost-effective approach for potable water production since they boost the evaporation and condensation rate. This paper is a comprehensive literature on different types of nanofluid and various numerical, experimental and analytical methods that researchers have applied to augment the efficiency of system.

Keywords

Nanofluid Heat transfer Desalination Solar still Evaporation Condensation 

List of symbols

A

Area

As

Area of the solar still in m2

Ab

Area of the basin

F

Fluid

FESEM

Field Emission Scanning Electron Microscope

EPF

Energy production factor

H

Heat transfer coefficient

EPBT

Energy payback time

Is

Current density of the surface

n

Number

\(\rho\)

Density

PCM

Phase change material

T

Temperature (°C)

UV

Ultraviolet

XRD

X-ray diffraction

\(\eta\)

Efficiency

\(\emptyset\)

Concentration of solid particles

W

West

Subscripts

a

Ambient

ann

Annual

b

Basin surface

e

Evaporative

ebf

Evaporative base fluid

eff

Effective

en

Energy

ex

Exergy

giW

Inner condensing of the west side

giE

Inner condensing of the east side

in

Input

Notes

References

  1. 1.
    Nayi KH, Modi KV. Pyramid solar still: a comprehensive review. Renew Sustain Energy Rev. 2018;81:136–48.CrossRefGoogle Scholar
  2. 2.
    Kaushal A, Varun. Solar stills: a review. Renew Sustain Energy Rev. 2010;14(1):446–53.CrossRefGoogle Scholar
  3. 3.
    Huang Z-F, et al. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy. 2015;12(Supplement C):646–56.CrossRefGoogle Scholar
  4. 4.
    Seyednezhad M, Rajabi A, Muchtar A, Somalu MR, Ooshaksaraei P. Effect of compaction pressure on the performance of a non-symmetrical NiO–SDC/SDC composite anode fabricated by conventional furnace. J Asian Ceram Soc. 2017;5(2):77–81.CrossRefGoogle Scholar
  5. 5.
    Ni G, et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy. 2015;17(Supplement C):290–301.CrossRefGoogle Scholar
  6. 6.
    Chen Y, et al. Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy. 2014;8(Supplement C):25–33.CrossRefGoogle Scholar
  7. 7.
    Sahota L, Tiwari GN. Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids. Energy Convers Manag. 2017;148(Supplement C):413–30.CrossRefGoogle Scholar
  8. 8.
    Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.CrossRefGoogle Scholar
  9. 9.
    Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci. 2010;49(3):479–91.CrossRefGoogle Scholar
  10. 10.
    Minkowycz W, Sparrow EM, Abraham JP. Nanoparticle heat transfer and fluid flow. Boca Raton: CRC Press; 2012.Google Scholar
  11. 11.
    Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2007;11(5):797–817.CrossRefGoogle Scholar
  12. 12.
    Godson L, Raja B, Lal DM, Wongwises S. Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev. 2010;14(2):629–41.CrossRefGoogle Scholar
  13. 13.
    Hussein AM, Sharma KV, Bakar RA, Kadirgama K. A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renew Sustain Energy Rev. 2014;29:734–43.CrossRefGoogle Scholar
  14. 14.
    Colangelo G, Favale E, Miglietta P, de Risi A, Milanese M, Laforgia D. Experimental test of an innovative high concentration nanofluid solar collector. Appl Energy. 2015;154(Supplement C):874–81.CrossRefGoogle Scholar
  15. 15.
    Elias Jamil, Bechelany Mikhael, Utke Ivo, Erni Rolf, Philippe Laetitia. Urchin-inspired zinc oxide as building blocks for nanostructured solar cells. Nano Energy. 2012;1(5):696–705.CrossRefGoogle Scholar
  16. 16.
    Organization WH, Supply WUJW, Programme SM. Progress on sanitation and drinking water: 2015 update and MDG assessment. Geneva: World Health Organization; 2015.Google Scholar
  17. 17.
    Sheikholeslami M, Seyednezhad M. Lattice Boltzmann method simulation for CuO–water nanofluid flow in a porous enclosure with hot obstacle. J Mol Liq. 2017;243(Supplement C):249–56.CrossRefGoogle Scholar
  18. 18.
    Islam MR, Shabani B, Rosengarten G. Nanofluids to improve the performance of PEM fuel cell cooling systems: a theoretical approach. Appl Energy. 2016;178(Supplement C):660–71.CrossRefGoogle Scholar
  19. 19.
    Colangelo G, Favale E, de Risi A, Laforgia D. A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl Energy. 2013;111(Supplement C):80–93.CrossRefGoogle Scholar
  20. 20.
    Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.CrossRefGoogle Scholar
  21. 21.
    Khawaji AD, Kutubkhanah IK, Wie J-M. Advances in seawater desalination technologies. Desalination. 2008;221(1):47–69.CrossRefGoogle Scholar
  22. 22.
    Thu K, Saha BB, Chakraborty A, Chun WG, Ng KC. Study on an advanced adsorption desalination cycle with evaporator–condenser heat recovery circuit. Int J Heat Mass Transf. 2011;54(1–3):43–51.CrossRefGoogle Scholar
  23. 23.
    Kabeel AE, Hamed AM, El-Agouz SA. Cost analysis of different solar still configurations. Energy. 2010;35(7):2901–8.CrossRefGoogle Scholar
  24. 24.
    Hasnain SM, Alajlan SA. Coupling of PV-powered RO brackish water desalination plant with solar stills. Desalination. 1998;116(1):57–64.CrossRefGoogle Scholar
  25. 25.
    Shatat M, Riffat SB. Water desalination technologies utilizing conventional and renewable energy sources. Int J Low-Carbon Technol. 2014;9(1):1–19.CrossRefGoogle Scholar
  26. 26.
    Sivakumar V, Sundaram EG. Improvement techniques of solar still efficiency: a review. Renew Sustain Energy Rev. 2013;28:246–64.CrossRefGoogle Scholar
  27. 27.
    Panchal HN, Patel S. An extensive review on different design and climatic parameters to increase distillate output of solar still. Renew Sustain Energy Rev. 2017;69:750–8.CrossRefGoogle Scholar
  28. 28.
    Karakilcik M, Kıymaç K, Dincer I. Experimental and theoretical temperature distributions in a solar pond. Int J Heat Mass Transf. 2006;49(5):825–35.CrossRefGoogle Scholar
  29. 29.
    Otanicar TP, Golden JS. Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ Sci Technol. 2009;43(15):6082–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Velmurugan V, Srithar K. Performance analysis of solar stills based on various factors affecting the productivity—a review. Renew Sustain Energy Rev. 2011;15(2):1294–304.CrossRefGoogle Scholar
  31. 31.
    Tsoutsos T, Frantzeskaki N, Gekas V. Environmental impacts from the solar energy technologies. Energy Policy. 2005;33(3):289–96.CrossRefGoogle Scholar
  32. 32.
    Duffie JA, Beckman WA. Solar engineering of thermal processes. Hoboken: Wiley; 1980.Google Scholar
  33. 33.
    Tiwari GN, Singh HN, Tripathi R. Present status of solar distillation. Sol Energy. 2003;75(5):367–73.CrossRefGoogle Scholar
  34. 34.
    Sampathkumar K, Arjunan TV, Pitchandi P, Senthilkumar P. Active solar distillation—a detailed review. Renew Sustain Energy Rev. 2010;14(6):1503–26.CrossRefGoogle Scholar
  35. 35.
    Rajaseenivasan T, Murugavel KK, Elango T, Hansen RS. A review of different methods to enhance the productivity of the multi-effect solar still. Renew Sustain Energy Rev. 2013;17:248–59.CrossRefGoogle Scholar
  36. 36.
    Foster R, Ghassemi M, Cota A. Solar energy: renewable energy and the environment. Boca Raton: CRC Press; 2009.CrossRefGoogle Scholar
  37. 37.
    Kabeel A, Omara Z, Essa F, Abdullah A. Solar still with condenser—a detailed review. Renew Sustain Energy Rev. 2016;59(C):839–57.CrossRefGoogle Scholar
  38. 38.
    Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf 2018;125:1087–95.CrossRefGoogle Scholar
  39. 39.
    Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett. 2011;6(1):247.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Saidur R, Kazi SN, Hossain MS, Rahman MM, Mohammed HA. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sustain Energy Rev. 2011;15(1):310–23.CrossRefGoogle Scholar
  41. 41.
    Yiamsawas T, Mahian O, Dalkilic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111(Supplement C):40–5.CrossRefGoogle Scholar
  42. 42.
    Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Internat J Heat Mass Transfer 2018;122:643–650.CrossRefGoogle Scholar
  43. 43.
    Reddy PS, Chamkha AJ. Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids. Alex Eng J. 2016;55(1):331–41.CrossRefGoogle Scholar
  44. 44.
    Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2005;128(3):240–50.CrossRefGoogle Scholar
  45. 45.
    Sahota L, Tiwari GN. Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve. Desalination. 2016;388(Supplement C):9–21.CrossRefGoogle Scholar
  46. 46.
    Samee MA, Mirza UK, Majeed T, Ahmad N. Design and performance of a simple single basin solar still. Renew Sustain Energy Rev. 2007;11(3):543–9.CrossRefGoogle Scholar
  47. 47.
    Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10.CrossRefGoogle Scholar
  48. 48.
    Gnanadason MK, Kumar PS, Jemilda G, Jasper SS. Effect of nanofluids in a modified vacuum single basin solar still. Int J Sci Eng Res. 2012;3:2229–5518.Google Scholar
  49. 49.
    Ali MT, Fath HES, Armstrong PR. A comprehensive techno-economical review of indirect solar desalination. Renew Sustain Energy Rev. 2011;15(8):4187–99.CrossRefGoogle Scholar
  50. 50.
    Prakash P, Velmurugan V. Parameters influencing the productivity of solar stills—a review. Renew Sustain Energy Rev. 2015;49:585–609.CrossRefGoogle Scholar
  51. 51.
    Sain MK, Kumawat G. Performance enhancement of single slope solar still using nano-particles mixed black paint. Adv Nanosci Technol Int J. 2015;1:55–65.Google Scholar
  52. 52.
    Kabeel A, Omara Z, Essa F. Numerical investigation of modified solar still using nanofluids and external condenser. J Taiwan Inst Chem Eng. 2017;75:77–86.CrossRefGoogle Scholar
  53. 53.
    Kabeel AE, Omara ZM, Essa FA. Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach. Energy Convers Manag. 2014;78(Supplement C):493–8.CrossRefGoogle Scholar
  54. 54.
    Manokar AM, Murugavel KK, Esakkimuthu G. Different parameters affecting the rate of evaporation and condensation on passive solar still—a review. Renew Sustain Energy Rev. 2014;38:309–22.CrossRefGoogle Scholar
  55. 55.
    Kabeel AE, Omara ZM, Essa FA. Improving the performance of solar still by using nanofluids and providing vacuum. Energy Convers Manag. 2014;86(Supplement C):268–74.CrossRefGoogle Scholar
  56. 56.
    Thakur AK, Agarwal D, Khandelwal P, Dev S. Comparative study and yield productivity of nano-paint and nano-fluid used in a passive-type single basin solar still. In: SenGupta S, Zobaa AF, Sherpa KS, Bhoi AK, editors. Advances in smart grid and renewable energy: proceedings of ETAEERE-2016. Singapore: Springer Singapore; 2018. p. 709–16.Google Scholar
  57. 57.
    Muftah AF, Alghoul MA, Fudholi A, Abdul-Majeed MM, Sopian K. Factors affecting basin type solar still productivity: a detailed review. Renew Sustain Energy Rev. 2014;32:430–47.CrossRefGoogle Scholar
  58. 58.
    Rajasekhar G, Eswaramoorthy M. Performance evaluation on solar still integrated with nano-composite phase change materials. Appl Solar Energy. 2015;51(1):15–21.CrossRefGoogle Scholar
  59. 59.
    Al-Hayeka I, Badran OO. The effect of using different designs of solar stills on water distillation. Desalination. 2004;169(2):121–7.CrossRefGoogle Scholar
  60. 60.
    Panchal HN. Use of thermal energy storage materials for enhancement in distillate output of solar still: a review. Renew Sustain Energy Rev. 2016;61:86–96.CrossRefGoogle Scholar
  61. 61.
    Sahota L, Tiwari GN. Effect of Al2O3 and TiO2–water-based nanofluids on heat transfer coefficients of passive double slope solar still. Int J Energy Environ Econ. 2016;24(1):3.Google Scholar
  62. 62.
    Sahota L, Tiwari G. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Sol Energy. 2016;130:260–72.CrossRefGoogle Scholar
  63. 63.
    Sahota L, Tiwari G. Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination. 2017;409:66–79.CrossRefGoogle Scholar
  64. 64.
    Sahota L, Tiwari G. Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids. Energy Convers Manag. 2017;148:413–30.CrossRefGoogle Scholar
  65. 65.
    Sahota L, Tiwari G. Analytical characteristic equation of nanofluid loaded active double slope solar still coupled with helically coiled heat exchanger. Energy Convers Manag. 2017;135:308–26.CrossRefGoogle Scholar
  66. 66.
    Rashidi S, Bovand M, Rahbar N, Esfahani JA. Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renew Energy. 2018;118(Supplement C):536–45.CrossRefGoogle Scholar
  67. 67.
    Kaviti AK, Yadav A, Shukla A. Inclined solar still designs: a review. Renew Sustain Energy Rev. 2016;54:429–51.CrossRefGoogle Scholar
  68. 68.
    Rashidi S, Bovand M, Rahbar N, Esfahani JA. Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renew Energy. 2018;118:536–45.CrossRefGoogle Scholar
  69. 69.
    Manchanda H, Kumar M. “A comprehensive decade review and analysis on designs and performance parameters of passive solar still. Renew Wind Water Sol. 2015;2(1):17.CrossRefGoogle Scholar
  70. 70.
    Saleh SM, Soliman AM, Sharaf MA, Kale V, Gadgil B. Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. J Environ Chem Eng. 2017;5(1):1219–26.CrossRefGoogle Scholar
  71. 71.
    Arunkumar T, et al. Effect of heat removal on tubular solar desalting system. Desalination. 2016;379:24–33.CrossRefGoogle Scholar
  72. 72.
    Arunkumar T, Velraj R, Denkenberger DC, Sathyamurthy R, Kumar KV, Ahsan A. Productivity enhancements of compound parabolic concentrator tubular solar stills. Renew Energy. 2016;88:391–400.CrossRefGoogle Scholar
  73. 73.
    Omara Z, Kabeel A, Essa F. Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers Manag. 2015;103:965–72.CrossRefGoogle Scholar
  74. 74.
    Omara ZM, Kabeel AE, Abdullah AS. A review of solar still performance with reflectors. Renew Sustain Energy Rev. 2017;68:638–49.CrossRefGoogle Scholar
  75. 75.
    Sharshir SW, et al. Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Therm Eng. 2017;113(Supplement C):684–93.CrossRefGoogle Scholar
  76. 76.
    Sharshir S, et al. Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Therm Eng. 2017;113:684–93.CrossRefGoogle Scholar
  77. 77.
    Gupta B, Shankar P, Sharma R, Baredar P. Performance enhancement using nano particles in modified passive solar still. Procedia Technol. 2016;25:1209–16.CrossRefGoogle Scholar
  78. 78.
    Kabeel A, Omara Z, Essa F, Abdullah A, Arunkumar T, Sathyamurthy R. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alex Eng J. 2017;56(4):433–8.CrossRefGoogle Scholar
  79. 79.
    Chen W, Zou C, Li X, Li L. Experimental investigation of SiC nanofluids for solar distillation system: stability, optical properties and thermal conductivity with saline water-based fluid. Int J Heat Mass Transf. 2017;107:264–70.CrossRefGoogle Scholar
  80. 80.
    Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115(Supplement C):400–10.CrossRefGoogle Scholar
  81. 81.
    Pk N, Sathyamurthy R. Improving the yield of freshwater and exergy analysis of conventional solar still with different nanofluids. FME Trans. 2017;45(4):525.Google Scholar
  82. 82.
    Sahota L, Shyam, Tiwari GN. Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination. 2017;409(Supplement C):66–79.CrossRefGoogle Scholar
  83. 83.
    Gamit ID, Modi K. Comparative analysis of double slope solar still using Al2O3 nanofluid with conventional double slope solar still. Int J Adv Res Innov Ideas Educ. 2016;3(2):2384.Google Scholar
  84. 84.
    Chen W, Zou C, Li X, Li L. Experimental investigation of SiC nanofluids for solar distillation system: stability, optical properties and thermal conductivity with saline water-based fluid. Int J Heat Mass Transf. 2017;107(Supplement C):264–70.CrossRefGoogle Scholar
  85. 85.
    Gupta B, Shankar P, Sharma R, Baredar P. Performance enhancement using nano particles in modified passive solar still. Procedia Technol. 2016;25(Supplement C):1209–16.CrossRefGoogle Scholar
  86. 86.
    Sellami MH, Guemari S, Touahir R, Loudiyi K. Solar distillation using a blackened mixture of Portland cement and alluvial sand as a heat storage medium. Desalination. 2016;394(Supplement C):155–61.CrossRefGoogle Scholar
  87. 87.
    Sharma SJ, Modi K. Techniques to improve productivity of spherical solar still. Int J Adv Res Innov Ideas Educ. 2016;2(3):997–1001.Google Scholar
  88. 88.
    Arunkumar T, et al. Effect of heat removal on tubular solar desalting system. Desalination. 2016;379(Supplement C):24–33.CrossRefGoogle Scholar
  89. 89.
    Yadav S, Sudhakar K. Different domestic designs of solar stills: a review. Renew Sustain Energy Rev. 2015;47:718–31.CrossRefGoogle Scholar
  90. 90.
    Kabeel A, El-Said EM. Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector. Desalination. 2014;333(1):10–22.CrossRefGoogle Scholar
  91. 91.
    Elango T, Kannan A, Murugavel KK. Performance study on single basin single slope solar still with different water nanofluids. Desalination. 2015;360:45–51.CrossRefGoogle Scholar
  92. 92.
    Qin Yinghong, Hiller Jacob E, Meng Demiao. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.CrossRefGoogle Scholar
  93. 93.
    Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7056-7.CrossRefGoogle Scholar
  94. 94.
    Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.CrossRefGoogle Scholar
  95. 95.
    Li Z, Saleem S, Shafee A, Chamkha AJ, Du S. Analytical investigation of nanoparticle migration in a duct considering thermal radiation. J Therm Anal Calorim. 2019;135:1629–41.CrossRefGoogle Scholar
  96. 96.
    Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.CrossRefGoogle Scholar
  97. 97.
    Saleem S, Nadeem S, Rashidi MM, Raju CS. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst Technol. 2019;25:683–9.CrossRefGoogle Scholar
  98. 98.
    Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.CrossRefGoogle Scholar
  99. 99.
    Kumar RA, Babu BG, Mohanraj M. Thermodynamic performance of forced convection solar air heaters using pin-fin absorber plate packed with latent heat storage materials. J Therm Anal Calorim. 2016;126:1657–78.CrossRefGoogle Scholar
  100. 100.
    Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.Google Scholar
  101. 101.
    Sadiq MA, Khan AU, Saleem S, Nadeem S. Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC Adv. 2019;9:4751–64.CrossRefGoogle Scholar
  102. 102.
    Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.CrossRefGoogle Scholar
  103. 103.
    Raju CSK, Saleem S, Mamatha SU, Hussain I. Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model. Int J Therm Sci. 2018;132:309–15.CrossRefGoogle Scholar
  104. 104.
    Sheikholeslami M. Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.CrossRefGoogle Scholar
  105. 105.
    Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-018-7866-7.CrossRefGoogle Scholar
  106. 106.
    Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.CrossRefGoogle Scholar
  107. 107.
    Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7070-9.CrossRefGoogle Scholar
  108. 108.
    Gao W, Wang WF. The eccentric connectivity polynomial of two classes of nanotubes. Chaos Solitons Fractals. 2016;89:290–4.CrossRefGoogle Scholar
  109. 109.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7070-9.CrossRefGoogle Scholar
  110. 110.
    Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08235-3.CrossRefGoogle Scholar
  111. 111.
    Stalin PMJ, Arjunan TV, Matheswaran MM, Sadanandam N. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6865-4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mohadeseh Seyednezhad
    • 1
  • M. Sheikholeslami
    • 2
    • 3
  • Jagar A. Ali
    • 4
    • 5
  • Ahmad Shafee
    • 6
    • 7
    Email author
  • Truong Khang Nguyen
    • 6
    • 7
  1. 1.Department of Mechanical and Aerospace EngineeringFlorida Institute of TechnologyMelbourneUSA
  2. 2.Department of Mechanical EngineeringBabol Noshirvani University of TechnologyBabolIran
  3. 3.Renewable Energy Systems and Nanofluid Applications in Heat Transfer LaboratoryBabol Noshirvani University of TechnologyBabolIran
  4. 4.Department of Petroleum Engineering, Faculty of EngineeringSoran UniversitySoranIraq
  5. 5.Department of Petroleum Engineering, College of EngineeringKnowledge UniversityArbīlIraq
  6. 6.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  7. 7.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations