Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 4, pp 2605–2613 | Cite as

Using DTA/DSC data for assessment of the Toop and Muggianu predictive models for the Ag–Au–In ternary

  • Alexander S. Pavlenko
  • Evgenia A. Ptashkina
  • Andrey V. Khoroshilov
  • Elizaveta G. Kabanova
  • Victor N. KuznetsovEmail author
Article
  • 78 Downloads

Abstract

The relative performance of the Muggianu and Toop methods of preliminary prediction of thermodynamic properties of solution phases is tested using Ag–Au–In ternary as a model system, which was recently studied by the present authors. The temperatures of solids, monovariant reaction (where appropriate) and liquids, as well as the heat of melting of solid solutions, were measured by DTA/DSC for five ternary samples. Different extrapolation models generate very different descriptions of phase equilibria. However, accounting for ternary interactions brings all the results into moderately close agreement. In both methods, the values of ternary parameters for liquid phase are more negative than for solid phases (about twice in modulo in Muggianu one and up to ten times in Toop case). This implies the stabilization of liquid in central concentration region. Neither predictive model captures this without accounting for ternary interactions.

Keywords

DSC CALPHAD calculation Muggianu extrapolation Toop extrapolation Phase equilibria Ag–Au–In ternary 

Notes

Supplementary material

10973_2019_8591_MOESM1_ESM.tdb (13 kb)
Supplementary material 1 (TDB 13 kb)
10973_2019_8591_MOESM2_ESM.tdb (12 kb)
Supplementary material 2 (TDB 12 kb)
10973_2019_8591_MOESM3_ESM.txt (0 kb)
Supplementary material 2 (TXT 1 kb)

References

  1. 1.
    Saunders N, Miodovnik AP. CALPHAD (calculation of phase diagrams): a comprehensive guide. London: Pergamon; 1998.Google Scholar
  2. 2.
    Ptashkina EA, Romanova AG, Pavlenko AS, Kabanova EG, Kuznetsov VN. Phase equilibria in the Ag–Au–In system at \(500\,^\circ \text{ C }\). Russ J Phys Chem A. 2017;91:265–8.  https://doi.org/10.1134/S0036024417020236.CrossRefGoogle Scholar
  3. 3.
    Pavlenko AS, Ptashkina EA, Kabanova EG, Kuznetsov VN. Comparing the methods of extrapolation prediction of thermodynamic properties and phase equilibria: the case of Ag–Au–In system. In: Gusarov VV, editor. Abstracts of all-Russian conference “Solid State Chemistry and Functional Materials”. St. Petersburg. ISBN 978-5-6040768-1-1; 2018Google Scholar
  4. 4.
    Coll R, Saurina J, Escoda L, Suñol JJ. Thermal analysis of \(\text{ Mn }_{{50}}\text{ Ni }_{50-x}\) (Sn, In)\(_x\) Heusler shape memory alloys. J Therm Anal Calorim. 2018;134:1277–84.  https://doi.org/10.1007/s10973-018-7551-x.CrossRefGoogle Scholar
  5. 5.
    Kakitani R, de Gouveia GL, Garcia A, Cheung N, Spinelli JE. Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. J Therm Anal Calorim. 2019;137:983–96.  https://doi.org/10.1007/s10973-018-07992-x.CrossRefGoogle Scholar
  6. 6.
    Chojnacka I, Rutkowska I, Kapała J, Rycerz L. Phase equilibria in the AgCl-\(\text{ LnCl }_3\) (Ln \(=\) Ce, Nd, Sm, Gd) binary systems. J Therm Anal Calorim 2019.  https://doi.org/10.1007/s10973-019-08470-8
  7. 7.
    Rycerz L. Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements. J Therm Anal Calorim. 2013;113:231–8.  https://doi.org/10.1007/s10973-013-3097-0.CrossRefGoogle Scholar
  8. 8.
    Hillert M. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. CALPHAD. 1980;4:1–12.  https://doi.org/10.1016/0364-5916(80)90016-4.CrossRefGoogle Scholar
  9. 9.
    Andersson JO, Helander T, Höglund L, Shi PF, Sundman B. Thermo-Calc and DICTRA, Computational tools for materials science. CALPHAD. 2002;26:273–312.  https://doi.org/10.1016/S0364-5916(02)00037-8.CrossRefGoogle Scholar
  10. 10.
    Ansara I, Nabot JP. A thermodynamic re-assessment of the Au–In system in the Au-rich region. CALPHAD. 1992;16:13–8.  https://doi.org/10.1016/0364-5916(92)90032-S.CrossRefGoogle Scholar
  11. 11.
    Hassam S, Gambino M, Gaune-Escard M, Bros JP, Ågren J. Experimental and calculated Ag + Au + Ge phase diagram. Metall Trans. 1988;19A:409–16.  https://doi.org/10.1007/BF02649254.CrossRefGoogle Scholar
  12. 12.
    Moser Z, Gasior W, Pstrus J, Zakulski W, Ohnuma I, Liu XJ, Inohana Y, Ishida K. Studies of the Ag–In phase diagram and surface tension measurements. J Electron Mater. 2001;30:1120–8.  https://doi.org/10.1007/s11664-001-0138-4.CrossRefGoogle Scholar
  13. 13.
    Liu HS, Cui Y, Ishida K, Jin ZP. Thermodynamic reassessment of the Au–In binary system. CALPHAD. 2003;27:27–37.  https://doi.org/10.1016/S0364-5916(03)00028-2.CrossRefGoogle Scholar
  14. 14.
    Dinsdale AT. SGTE data for pure elements. CALPHAD. 1991;15:317–425.  https://doi.org/10.1016/0364-5916(91)90030-N.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentMoscow State UniversityMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryMoscowRussia

Personalised recommendations