Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 4, pp 2445–2455 | Cite as

Improvement of thermal stability of EPDM by radiation cross-linking for space applications

  • Traian ZaharescuEmail author
  • Tunde Borbath
  • Virgil Marinescu
  • Ana Maria Luchian
  • Istvan Borbath


The investigation of radiation effects on ethylene–propylene–diene terpolymer (EPDM) loaded with trifunctional monomer (trimethylolpropane triacrylate, TMPTA) at three concentrations (0, 2.5 and 5 phr) was accomplished by isothermal and nonisothermal chemiluminescence spectroscopies, thermal analysis, mechanical testing and scanning electron microscopy. All these investigations indicate the contribution of monomer to the improvement of degradation strength and the possible extension of improved material over the space and nuclear ranges. The monomer loading of 2.5 phr and 50 kGy exposure dose is the optimal conditions for the improvement in thermal strength of polymer. The radiation effect is related to the cross-linking, but the contribution of radiolysis on the thermal stability at 100 kGy must not be discarded. The modified EPDM presents satisfactory functional features related to the material durability. The oxidative degradation and cross-linking, the main ways to high material performances, are the competitive processes through which EPDM is qualified for special operation purposes.


EPDM Cross-linking Thermal stability Radiation resistance 



The authors of this paper are grateful to Romania Space Agency (ROSA) for financial support of the project “Biosealing for Mars Sample Containment System” 137/2017 that includes the present results.

Supplementary material

10973_2019_8581_MOESM1_ESM.tif (893 kb)
Supplementary material 1 (TIFF 893 kb)
10973_2019_8581_MOESM2_ESM.tif (927 kb)
Supplementary material 2 (TIFF 927 kb)
10973_2019_8581_MOESM3_ESM.tif (854 kb)
Supplementary material 3 (TIFF 853 kb)
10973_2019_8581_MOESM4_ESM.tif (896 kb)
Supplementary material 4 (TIFF 895 kb)
10973_2019_8581_MOESM5_ESM.tif (928 kb)
Supplementary material 5 (TIFF 928 kb)
10973_2019_8581_MOESM6_ESM.tif (917 kb)
Supplementary material 6 (TIFF 916 kb)
10973_2019_8581_MOESM7_ESM.tif (941 kb)
Supplementary material 7 (TIFF 940 kb)
10973_2019_8581_MOESM8_ESM.tif (912 kb)
Supplementary material 8 (TIFF 911 kb)
10973_2019_8581_MOESM9_ESM.tif (915 kb)
Supplementary material 9 (TIFF 915 kb)
10973_2019_8581_MOESM10_ESM.tif (222 kb)
Supplementary material 10 (TIFF 221 kb)
10973_2019_8581_MOESM11_ESM.tif (210 kb)
Supplementary material 11 (TIFF 210 kb)
10973_2019_8581_MOESM12_ESM.tif (197 kb)
Supplementary material 12 (TIFF 197 kb)
10973_2019_8581_MOESM13_ESM.docx (13 kb)
Supplementary material 13 (DOCX 13 kb)


  1. 1.
    Koohestani B, Khodadadi Darban A, Yilmaz E, Mokhatari P, Ganetri I. Influence of amine and vinyl functional groups of silanes on total performance of thermoplastic-based composites. Constr Build Mater. 2018;172:98–105.CrossRefGoogle Scholar
  2. 2.
    Xu PW, Zhan XY, Niu DY, Noch M, Deshmukh Y. Superior reinforcement of ethyl-co-vinyl acetate rubber composites by using nano-sizes starch filler. The role of particle size and reactive compatibilization. Eur Polym J. 2018;105:107–14.CrossRefGoogle Scholar
  3. 3.
    Zaharescu T, Marinescu V, Hebda E, Pielikowski K. Thermal stability of gamma-irradiated polyurethane/modified POSS nanoparticles. J Therm Anal Calorim. 2018;133:49–54.CrossRefGoogle Scholar
  4. 4.
    Zaharescu T, Giurginca M, Jipa S. Radiochemical oxidation of ethylene–propylene elastomers in the presence of some phenolic antioxidants. Polym Degrad Stab. 1999;63:245–51.CrossRefGoogle Scholar
  5. 5.
    Rivaton A, Cambon S, Gardette J-L. Radiochemical ageing of EPDM elastomers. 3. Mechanism of radiooxidation. Nucl Instrum Methods B. 2005;227:357–68.CrossRefGoogle Scholar
  6. 6.
    Bellam Balaji A, Thevy Ratnam C, Khalide M, Walvekard R. Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend. Radiat Phys Chem. 2017;141:179–89.CrossRefGoogle Scholar
  7. 7.
    Özdemir T. Gamma irradiation degradation/modification of 5-ethylidene 2-norbornene (ENB)-based ethylene–propylene diene rubber (EPDM) depending on ENB content of EPDM and type/content of peroxides used in vulcanization. Radiat Phys Chem. 2008;77:787–93.CrossRefGoogle Scholar
  8. 8.
    Zaharescu T, Ilieş D-C, Roşu T. Thermal and spectroscopic analysis of stabilization effect of copper complexes in EPDM. J Therm Anal Calorim. 2016;123:231–9.CrossRefGoogle Scholar
  9. 9.
    Musuc AM, Badea-Doni M, Jecu L, Rusu A, Popa VT. FTIR, XRD, and DSC analysis of the rosemary extract effect on polyethylene structure and biodegradability. J Therm Anal Calorim. 2013;114:169–77.CrossRefGoogle Scholar
  10. 10.
    Planes E, Chazeau L, Vigier G, Fourier J, Stevenson-Royaud I. Influence of fillers on mechanics properties of ATH filled EPDM during ageing by gamma irradiation. Polym Degrad Stab. 2010;95:1029–38.CrossRefGoogle Scholar
  11. 11.
    Attia NF, Hegazi EM, Abdelmageed AA. Smart modifications in inorganic fibers and flammability mechanical and radiation shielding properties of their rubber composites. J Therm Anal Calorim. 2018;132:1567–78.CrossRefGoogle Scholar
  12. 12.
    Yasin T, Khan S, Nho Y-C, Ahmed R. Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend. Radiat Phys Chem. 2012;81:421–5.CrossRefGoogle Scholar
  13. 13.
    Stelescu MD, Mănăilă E, Crăciun G, Zuga N. Crosslinking and grafting ethylene vinyl acetate copolymer with accelerated electrons in the presence of polyfunctional monomers. Polym Bull. 2012;68:263–85.CrossRefGoogle Scholar
  14. 14.
    Makuuchi K, Cheng S. Radiation chemistry of polymer materials and its industrial applications. Hoboken: Wiley; 2012.CrossRefGoogle Scholar
  15. 15.
    Zaharescu T, Jipa S. Radiochemical modifications in polymers. In: Arndt K-F, Lecher MD, editors. Polymers. Londolt-Börnstein numerical data and functional relationships in science and technology. Group VIII, vol. 6. Berlin: Springer; 2013. p. 93–184.Google Scholar
  16. 16.
    Chmielewski AG, Haji-Saed M, Ahmed S. Progress in radiation processing of polymers. Nucl Instrum Methods B. 2005;236:44–54.CrossRefGoogle Scholar
  17. 17.
    Heilman S, do Rosário Matos J, Gondim de Andrade e Silva L. Thermoanalytical study of polyurethane, subjected to ionizing radiation, as raw material for catheters for clinical practice. J Therm Anal Calorim. 2017;127:2353–8.CrossRefGoogle Scholar
  18. 18.
    Zaharescu T, Feraru E, Podină C. Thermal stability of ethylene propylene–diene monomer/divinylbenzene systems. Polym Degrad Stab. 2005;871:1–16.Google Scholar
  19. 19.
    De Almeida A, Chazeau L, Vigier Marque G, Goutille Y. Influence of PE/PP ratio and ENB content on the degradation kinetics of γ-irradiated EPDM. Polym Degrad Stab. 2014;110:175–83.CrossRefGoogle Scholar
  20. 20.
    Bernstein R, Thomberg SM, Assink RA, Mowery DM, Alam MK, Irwin AN, Hochrein JM, Derzon DK, Klamo SB, Clough RL. Insights into oxidation mechanism in gamma-irradiated polypropylene using selective isotopic labeling with analysis by GC/MS, NMR and FTIR. Nucl Instrum Methods B. 2007;265:8–17.CrossRefGoogle Scholar
  21. 21.
    Assink RA, Celina M, Gillen KT, Clough RL, Alam TM. Morphology changes during radiation-thermal degradation of polyethylene and an EPDM copolymer by 13C NMR spectroscopy. Polym Degrad Stab. 2001;73:355–62.CrossRefGoogle Scholar
  22. 22.
    Fuzail M, Hill DJT, Park Y, Halley P. A rheology study of high-energy radiolysis of a semicrystalline ethylene–propylene copolymer containing DOP mobilizer. J Appl Polym Sci. 2006;101:3437–41.CrossRefGoogle Scholar
  23. 23.
    Stelescu MD, Mănăilă E, Crăciun G. Vulcanization of ethylene–propylene–terpolymer-based rubber mixtures by radiation processing. J Appl Polym Sci. 2013;128:2325–36.CrossRefGoogle Scholar
  24. 24.
    Sidi A, Colombani J, Larché J-F, Rivaton A. Multiscale analysis of the radiooxidative degradation of EVA/EPDM compounds. ATH filler and dose rate effect. Radiat Phys Chem. 2018;142:14–22.CrossRefGoogle Scholar
  25. 25.
    Shi CH, Cao CY, Lei MF, Peng L, Shen I. Time-dependent performances and constitutive model of EPDM rubber gasket used for tunnel segment joints. Tunn Undergr Sp Technol. 2015;50:490–8.CrossRefGoogle Scholar
  26. 26.
    Gordelier T, Parish D, Thies PR, Weller S, Davies P, Le Gac PY, Johanning L. Assessing the performance durability of elastomer moorings: assembly investigation enhanced by sub-component tests. Ocean Eng. 2018;155:411–24.CrossRefGoogle Scholar
  27. 27.
    Abadir EF. Mechanism and kinetics of the non-isothermal degradation of ethylene propylene diene monomer (EPDM). J Therm Anal Calorim. 2013;114:1409–13.CrossRefGoogle Scholar
  28. 28.
    Šarac T, Quiévy N, Gusarov A, Konstantinović MJ. The study of temperature and radiation induced degradation of cable polymers. A comparison between the mechanical properties of industrial and neat EPDM. Procedia Struct Integr. 2016;2:2604–14.CrossRefGoogle Scholar
  29. 29.
    Kruželák J, Sýkova R, Hudec I. Vulcanization of rubber compounds with peroxide curing systems. Rubber Chem Technol. 2016;90:60–88.CrossRefGoogle Scholar
  30. 30.
    Le Lay F. Study on the lifetime of EPDM seals in nuclear-powered vessels. Radiat Phys Chem. 2013;84:210–7.CrossRefGoogle Scholar
  31. 31.
    Wand JH, Yoshii F, Makuuchi K. Radiation vulcanization of ethylene–propylene rubber with polyfunctional monomers. Radiat Phys Chem. 2000;60:139–42.Google Scholar
  32. 32.
    Šarac T, Quiévy N, Gusarov A, Konstantinović MJ. Influence of γ-irradiation and temperature on the mechanical properties of EPDM cable insulation. Radiat Phys Chem. 2016;125:151–5.CrossRefGoogle Scholar
  33. 33.
    De Almeida A, Chazeau L, Vigier G, Marque G, Goutillec Y. Ultimate and toughness properties of γ-irradiated EPDM. Eur Polym J. 2017;97:178–87.CrossRefGoogle Scholar
  34. 34.
    Planes E, Chazeau L, Vigier G, Fourier J. Evolution of EPDM networks aged by gamma irradiation. Polymer. 2009;50:4028–38.CrossRefGoogle Scholar
  35. 35.
    Zaharescu T, Pielikowski K. Stabilization effect of POSS nanoparticles on gamma-irradiated polyurethanes. J Therm Anal Calorim. 2016;124:767–74.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Traian Zaharescu
    • 1
    Email author
  • Tunde Borbath
    • 2
  • Virgil Marinescu
    • 1
  • Ana Maria Luchian
    • 1
  • Istvan Borbath
    • 2
  1. 1.INCDIE ICPE CA, Radiochemistry CentreBucharestRomania
  2. 2.ROSEAL SAHarghita DistrictRomania

Personalised recommendations