Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 1037–1047 | Cite as

Accurate measurement of the longitudinal thermal conductivity and volumetric heat capacity of single carbon fibers with the 3ω method

  • Ketaki MishraEmail author
  • Bertrand Garnier
  • Steven Le Corre
  • Nicolas Boyard
Article
  • 43 Downloads

Abstract

An experimental setup for 3ω method with a constant current source and two differential amplifiers was built to measure the thermal conductivity and the volumetric heat capacity of single polyacrylonitrile (PAN)-based carbon fiber. In complement to a well-known analytical thermal model, a numerical one was developed that can check the validity of the analytical one and can also take into account the effect of convective heat loss on the measurements. A detailed sensitivity analysis of the unknown parameters was presented that would finally help in the better design of the setup for 3ω method. The tests were performed under vacuum and atmospheric pressure for chromel wire as a reference sample and under vacuum for two types of PAN-based carbon fiber. Detailed measurements were performed displaying the influence of convective loss and the thermal contact resistance between fiber and copper electrodes on the estimation of thermal properties of carbon fiber.

Keywords

3ω method Thermal conductivity Carbon fibers Sensitivity analysis Thermal contact resistance 

Notes

Acknowledgements

The authors would like to thanks J. Aubril for the discussions and quality of his technical realizations.

References

  1. 1.
    Sweeting RD, Liu XL. Measurement of thermal conductivity for fibre-reinforced composites. Compos Part A Appl Sci Manuf. 2004;35:933–8.CrossRefGoogle Scholar
  2. 2.
    Selvakumar M, Ramkumar T, Chandrasekar P. Thermal characterization of titanium–titanium boride composites. J Therm Anal Calorim. 2019;136:419–24.  https://doi.org/10.1007/s10973-019-08014-0.CrossRefGoogle Scholar
  3. 3.
    Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S. Thermophysical properties of densified pitch based carbon/carbon materials-I. Bidirectional composites. Carbon. 2006;44:488–95.CrossRefGoogle Scholar
  4. 4.
    Siddiqui MOR, Sun D. Development of experimental setup for measuring the thermal conductivity of textiles. Cloth Text Res J. 2018;36:215–30.CrossRefGoogle Scholar
  5. 5.
    Gallego NC, Edie DD, Ntasin LN, Ervin VJ. Modeling the thermal conductivity of carbon fibers. Carbon. 2000;38:1003–10.CrossRefGoogle Scholar
  6. 6.
    Craddock JD, Burgess JJ, Edrington SE, Weisenberger MC. Method for direct measurement of on-axis carbon fiber thermal diffusivity using the laser flash technique. J Therm Sci Eng Appl. 2016;9:014502.  https://doi.org/10.1115/1.4034853.CrossRefGoogle Scholar
  7. 7.
    Yamane T, Katayama SI, Todoki M, Hatta I. Thermal diffusivity measurement of single fibers by an ac calorimetric method. J Appl Phys. 1996;80:4358–65.CrossRefGoogle Scholar
  8. 8.
    Wang JL, Gu M, Zhang X, Song Y. Thermal conductivity measurement of an individual fibre using a T type probe method. J Phys D Appl Phys. 2009;42:105502.  https://doi.org/10.1088/0022-3727/42/10/105502 CrossRefGoogle Scholar
  9. 9.
    Pradere C, Batsale JC, Goyhénèche JM, Pailler R, Dilhaire S. Thermal properties of carbon fibers at very high temperature. Carbon. 2009;47:737–43.CrossRefGoogle Scholar
  10. 10.
    Liu J, Qu W, Xie Y, Zhu B, Wang T, Bai X, et al. Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers. Carbon. 2017;121:35–47.  https://doi.org/10.1016/j.carbon.2017.05.066.CrossRefGoogle Scholar
  11. 11.
    Lu L, Yi W, Zhang DL. 3 ω method for specific heat and thermal conductivity measurements. Rev Sci Instrum. 2001;72:2996–3003.CrossRefGoogle Scholar
  12. 12.
    Tian T, Cole KD. Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials. Int J Heat Mass Transf. 2012;55:6530–7.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.059.CrossRefGoogle Scholar
  13. 13.
    Boussatour G, Cresson PY, Genestie B, Joly N, Brun JF, Lasri T. Measurement of the thermal conductivity of flexible biosourced polymers using the 3-omega method. Polym Test. 2018;70:503–10.  https://doi.org/10.1016/j.polymertesting.2018.07.026.CrossRefGoogle Scholar
  14. 14.
    Schiffres SN, Malen JA. Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber. Rev Sci Instrum. 2011;82:064903.  https://doi.org/10.1063/1.3593372.CrossRefPubMedGoogle Scholar
  15. 15.
    Gauthier S, Giani A, Combette P. Gas thermal conductivity measurement using the three-omega method. Sens Actuators A Phys. 2013;195:50–5.  https://doi.org/10.1016/j.sna.2012.12.032.CrossRefGoogle Scholar
  16. 16.
    Zhao L, Luo Y, Huang X, Zhou X, Hebibul R, Ding J, et al. A novel microsensor for measuring thermal conductivity of fluid based on three omega method. Rev Sci Instrum. 2019;90:015002.  https://doi.org/10.1063/1.5053835.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang ZL, Tang DW, Zhang WG. Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fibre. J Phys D Appl Phys. 2007;40:4686–90.CrossRefGoogle Scholar
  18. 18.
    Pradère C, Goyhénèche JM, Batsale JC, Dilhaire S, Pailler R. Thermal diffusivity measurements on a single fiber with microscale diameter at very high temperature. Int J Therm Sci. 2006;45:443–51.CrossRefGoogle Scholar
  19. 19.
    Xing C, Jensen C, Munro T, White B, Ban H, Chirtoc M. Accurate thermal property measurement of fine fibers by the 3-omega technique. Appl Therm Eng. 2014;73:315–22.CrossRefGoogle Scholar
  20. 20.
    Hou J, Wang X, Vellelacheruvu P, Guo J, Liu C, Cheng HM. Thermal characterization of single-wall carbon nanotube bundles using the self-heating 3ω technique. J Appl Phys. 2006;100:124314.  https://doi.org/10.1063/1.2402973.CrossRefGoogle Scholar
  21. 21.
    Kaviany M. Principles of heat transfer. New York: Wiley; 2002.CrossRefGoogle Scholar
  22. 22.
    Boetcher SKS. Natural convection transfer from horizontal cylinders. In: Natural convection from circular cylinders. SpringerBriefs in applied sciences and technology. Cham: Springer.  https://doi.org/10.1007/978-3-319-08132-8.CrossRefGoogle Scholar
  23. 23.
    Ediss GA. Effect of vacuum pressure on the thermal loading of the ALMA cryostat. Natl Radio Astron Obs. 2006;554:1–3.Google Scholar
  24. 24.
    Chapelle E, Garnier B, Bourouga B. Interfacial thermal resistance measurement between metallic wire and polymer in polymer matrix composites. Int J Therm Sci. 2009;48:2221–7.  https://doi.org/10.1016/j.ijthermalsci.2009.05.001.CrossRefGoogle Scholar
  25. 25.
    Milošević ND, Raynaud M, Maglić KD. Estimation of thermal contact resistance between the materials of double-layer sample using the laser flash method. Inverse Probl Eng. 2002;10:85–103.CrossRefGoogle Scholar
  26. 26.
    Sundqvist B. Thermal diffusivity and thermal conductivity of Chromel, Alumel, and Constantan in the range 100–450 K. J Appl Phys. 1992;72:539–45.CrossRefGoogle Scholar
  27. 27.
    Omega Engineering. Physical Properties of Thermoelement Materials. https://www.omega.com/techref/pdf/z016.pdf. Accessed 1 Jan 2019.
  28. 28.
    Data sheet Torayca T300B. http://www.toraycfa.com/pdfs/T300DataSheet.pdf. Accessed 1 Jan 2019.
  29. 29.
    Data sheet Torayca T800H. https://www.toraycma.com/file_viewer.php?id=4463. Accessed 1 Jan 2019.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.CNRS, LTeN UMR 6607Université de NantesNantes Cedex 3France

Personalised recommendations