Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 4, pp 2937–2944 | Cite as

Thermal processing and thermal analysis of AlSi12–SiC hybrid composites sintered

  • Ioan MilosanEmail author
  • Bela Varga
  • Tibor Bedo
  • Mihai Alin Pop
  • Marianne Balat-Pichelin
  • Dana Luca-Motoc
  • Maria Stoicanescu


Metal powders are used in industry for a diversity of products and applications. Metal matrix composites are materials developed through advanced methods with increased characteristics that surpass those of conventional materials. In recent years, the aluminum alloy matrix composites (AlSiX/graphite, AlSiMg/SiC, Al/SiC) are considered better substitute materials for steel components because of their higher strength-to-mass ratio which results in significant mass savings, these materials being successfully used in the construction of automotive components such as brakes and clutches. The paper presents a study concerning the specificities of the sintering technology using solar energy of an AlSi12–SiC hybrid composite, made by powder metallurgy performed at PROMES-CNRS at Font-Romeu-Odeillo-France (MSSFs facility furnaces). Based on the collected data, conclusions could be drawn on the heating mode and the effect of the concentrated power of the parabola on the sintering curves recorded by thermal analysis. The qualification of the sintered samples is performed by structural, DIL and DSC analyses.


MMCs AlSi12–SiC hybrid composites Solar energy Sintering DIL DSC 



The financial support offered by the Access to Research Infrastructures activity in the 7th Framework Programme of the EU (SFERA 2 Grant Agreement No. 312643) is gratefully acknowledged, as well as the use of the facilities and the researchers/technology experts at the PROMES-CNRS laboratory. We hereby acknowledge the structural funds project PRO-DD (POS-CCE, O.2.2.1., ID 123, SMIS 2637, Contract No. 11/2009) for providing the infrastructure used in this paper.


  1. 1.
    Carvalho O, Buciumeanu M, Madeira S, Soares D, Silva FS, Miranda G. Mechanisms governing the mechanical behaviour of an AlSi–CNTs–SiCp hybrid composite. Compos B. 2016;90:443–9.CrossRefGoogle Scholar
  2. 2.
    Narciso J, Molina JM, Rodriguez A, Rodriguez-Reinoso F, Louis E. Effects of infiltration pressure on mechanical properties of Ale12Si/graphite composites for piston engines. Compos B. 2016;91:441–7.CrossRefGoogle Scholar
  3. 3.
    Alpas AT, Zhang J. Effect of SiC particulate reinforcement on the dry sliding wear of aluminium–silicon alloys (A356). Wear. 1993;155:81–104.Google Scholar
  4. 4.
    Rajaram G, Kumaran S, Satyam S. Effect of strain rate on tensile and compression behaviour of Al–Si/graphite composite. Mater Sci Eng A. 2011;528:6271–8.CrossRefGoogle Scholar
  5. 5.
    Goto H, Uchijo K. Wear mechanism of Al–Si Alloy impregnated graphite composites under dry sliding. Wear. 2005;259:613–9.CrossRefGoogle Scholar
  6. 6.
    Xue C, Bai H, Tao PF, Wang JW, Jiang N, Wang SL. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface. Mater Des. 2016;108:250–8.CrossRefGoogle Scholar
  7. 7.
    Shanmughasundaram P, Subramanian R. Study of parametric optimization of burr formation in step drilling of eutectic Al–Si alloy–Gr composites. J Mater Res Technol. 2014;3(2):150–7.CrossRefGoogle Scholar
  8. 8.
    Madeira S, Carvalho O, Carneir VH, Soares D, Silva FS, Miranda G. Damping capacity and dynamic modulus of hot pressed AlSi composites reinforced with different SiC particle sized. Compos B. 2016;90:399–405.CrossRefGoogle Scholar
  9. 9.
    Flamant G, Ferriere A, Laplaze D, Monty C. Solar processing of materials: opportunities and new frontiers. Sol Energy. 1999;66(2):117–32.CrossRefGoogle Scholar
  10. 10.
    Rodriguez GP, Lopez V, Vazquez AJ, De Damborenea JJ, Kirkpatrick A, Worek W. Solar Engineering. New York: ASME; 1993. p. 325–30.Google Scholar
  11. 11.
    Flamant G, Balat-Pichelin M, Elaboration and testing of materials using concentrated solar energy. Encyclopedia of Life Support Systems. Eolss Publisher Co. Ltd./UNESCO United Kingdon; 2010. p. 363–89.Google Scholar
  12. 12.
    Sarver T, Al-Qaraghuli A, Kazmerski Lawrence L. A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches. Renew Sustain Energy Rev. 2013;22:698–733.CrossRefGoogle Scholar
  13. 13.
    Balek V, Zeleňák V, Mitsuhashi T, Bakardjieva S, Šubrt J, Haneda H. Emanation thermal analysis of SiC based materials. J Therm Anal Calorim. 2002;67(1):83–9.CrossRefGoogle Scholar
  14. 14.
    Balek V, Beneš M, Šubrt J. Use of emanation thermal analysis in the microstructure diagnostics of alumina coatings. Ceram-Silik. 2008;52(2):85–9.Google Scholar
  15. 15.
    Pérez-Maqueda LA, Balek V, Poyato J, Pérez-Rodriquez JL, Šubrt J, Bountsewa IM, Beckman IN, Málek Z. Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA and XED. J Therm Anal Calorim. 2003;71:715–26.CrossRefGoogle Scholar
  16. 16.
    Gaune-Escard M. Calorimetric Methods. Molten Salt Technics, vol. 4. New York: Plenum Press; 1991. p. 152–92.Google Scholar
  17. 17.
    Ghosh KS. Calorimetric studies of 2024 Al–Cu–Mg and 2014 Al–Cu–Mg-Si alloys of various tempers. J Therm Anal Calorim. 2019;136:447–59.CrossRefGoogle Scholar
  18. 18.
    Snopiński P, Krόl M, Tański T, Krupińska B. Effect of cooling rate on microstructural development in alloy ALMG9. J Therm Anal Calorim. 2018;133:379–90.CrossRefGoogle Scholar
  19. 19.
    Krόl M, Tański T, Snopiński P, Tomiczek B. Structure and properties of aluminium-magnesium casting alloys after heat treatment. J Therm Anal Calorim. 2017;127:299–308.CrossRefGoogle Scholar
  20. 20.
    Labisz K, Konieczny J, Jurczyk S, Tański T, Krupiński M. Thermo-derivate analysis of Al–Si–Cu alloy used for surface treatment. J Therm Anal Calorim. 2017;129:895–903.CrossRefGoogle Scholar
  21. 21.
    Brodarac ZZ, Grgurić TH, Burja J. Thermodynamic stability of AlSi11 alloy microconstituents. J Therm Anal Calorim. 2017;127:431–8.CrossRefGoogle Scholar
  22. 22.
    Mostafapoor S, Malekan M, Emamy M. Thermal analysis study on the grain refinement of Al–15Zn–2.5Mg–2.5Cu alloy. J Therm Anal Calorim. 2017;127:1941–52.CrossRefGoogle Scholar
  23. 23.
    Farahany S, Ourdjini A, Idris MH. The usage of computer-aided cooling curve thermal analysis to optimise eutectic refiner and modifier in Al–Si alloys. J Therm Anal Calorim. 2012;109:105–11.CrossRefGoogle Scholar
  24. 24.
    Daoudi MI, Triki A, Redjaimia A. DSC study of the linetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy. J Therm Anal Calorim. 2011;104:627–33.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Ioan Milosan
    • 1
    Email author
  • Bela Varga
    • 1
  • Tibor Bedo
    • 1
  • Mihai Alin Pop
    • 1
  • Marianne Balat-Pichelin
    • 2
  • Dana Luca-Motoc
    • 3
  • Maria Stoicanescu
    • 1
  1. 1.Department of Materials Science, Faculty of Materials Science and EngineeringTransilvania University of BrasovBrasovRomania
  2. 2.PROMES-CNRS LaboratoryFont Romeu OdeilloFrance
  3. 3.Department of Vehicles and Transport, Faculty of Mechanical EngineeringTransilvania University of BrasovBrasovRomania

Personalised recommendations