Advertisement

Comparative study on thermal behaviors between micrites and thrombolites using thermogravimetric analysis

  • 80 Accesses

Abstract

Although micrites (abiotic limestone) and thrombolites (typical biotic limestone), according to the sedimentation and biological action, can be primarily distinguished from intuitively field observation and rock slices analysis. However, further analysis of thermal decomposition unique characteristics to distinguish them has rarely been reported. Here, the comparative studies of thermal decomposition behavior between micrites and thrombolites were carefully investigated using thermogravimetric analyzer in nitrogen atmosphere at multi-heating rates of 5, 10, 20 and 30 K min−1 from 323.15 to 1273.15 K. Moreover, the mineralogical compositions were both analyzed by powder X-ray diffraction followed by the results of calcite acting as the basic constituent for further verified. The kinetic model function and kinetic parameters were calculated by Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and Popescu methods, respectively. The results showed that the kinetic parameter activation energy (E) of thrombolites was obviously higher than that of micrites, which suggests the former have a higher crystallinity. In addition, the results of difference significance analysis showed extremely significant differences (P < 0.01) via statistical analysis using SPSS v19.0 for the E values between micrites and thrombolites calculated by different methods. These above results further confirmed that the thermal stability and crystallinity of thrombolites were obviously higher under the inducing effects by typical microorganisms. This provided very important useful information for understanding the mechanisms of abiotic and biotic limestones formed in nature; in particular, the thermal analysis of thrombolites maybe also provides an important guiding significance for both indoor and outdoor similar studies.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1

(modified after Chen et al. [20])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Anbalagan G, Rajakumar PR, Gunasekaran S. Non-isothermal decomposition of Indian limestone of marine origin. J Therm Anal Calorim. 2009;97:917–21.

  2. 2.

    Marinoni N, Allevi S, Marchi M, Dapiaggi M, Struble L. A kinetic study of thermal decomposition of limestone using in situ high temperature X-ray powder diffraction. J Am Ceram Soc. 2012;95:2491–8.

  3. 3.

    Jiang N, Zhao L, Gan Z. Influence of nucleating agent on the formation and enzymatic degradation of poly(butylene adipate) polymorphic crystals. Polym Degrad Stabil. 2010;95:1045–53.

  4. 4.

    Li TX, Yuan CQ, Zhao YH, Chen QL, Wei M, Wang YM. Facile synthesis and characterization of poly (o-phenylenediamine) submicrospheres doped with glycine. J Macromol Sci Phys. 2013;50:330–3.

  5. 5.

    Li Z, Hao A, Li X. β-Cyclodextrin supramolecular organogels induced by different carboxylic acids that exhibit diverse morphologies. J Mol Liq. 2014;196:52–60.

  6. 6.

    Miao Q, Liu Q, Sun E, Ren T. Nonlinear dynamics and optical power limiting of nanoseconds pulses in naphthalocyanines and phthalocyanines with central metals gallium and indium. J Photochem Photobiol A. 2016;316:19–23.

  7. 7.

    Ning ZB, Nielsen R, Zhao LF, Yu DH, Gan ZH. Influence of teflon substrate on crystallization and enzymatic degradation of polymorphic poly(butylene adipate). Chin J Polym Sci. 2014;32:1243–52.

  8. 8.

    Huntzinger DN, Eatmon TD. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod. 2009;17:668–75.

  9. 9.

    Lin S, Kiga T, Wang Y, Nakayama K. Energy analysis of CaCO3 calcination with CO2 capture. Energy Procedia. 2011;4:356–61.

  10. 10.

    Yu H, Yuan J, Guo W, Cheng J, Hu Q. A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection. Int J Coal Geol. 2008;73:156–66.

  11. 11.

    Yu H, Zhou G, Fan W, Ye J. Predicted CO2 enhanced coalbed methane recovery and CO2 sequestration in China. Int J Coal Geol. 2007;71:345–57.

  12. 12.

    Kim DM, Rhee YW. Kinetic study of domestic limestone (Daesung). Korean J Chem Eng. 1999;16:848–51.

  13. 13.

    Ersoy-Meriçboyu A, Küçükbayrak S, Yavuz R. Thermal decomposition kinetics of natural Turkish limestones under non-isothermal conditions. Thermochim Acta. 1993;223:121–8.

  14. 14.

    Tripathi HS, Ghosh A, Mukherjee B. Kinetics of non-isothermal and isothermal decomposition of limestone. Trans Indian Ceram Soc. 2004;63:155–8.

  15. 15.

    Olszak-Humienik M, Jablonski M. Thermal behavior of natural dolomite. J Therm Anal Calorim. 2015;119:2239–48.

  16. 16.

    Al HM, Liu Q. Ultrasound-assisted synthesis of acylals catalyzed by stannum (IV) phosphomolybdate under solvent-free condition. J Chem Soc Pak. 2012;34:299–301.

  17. 17.

    Ding J, Zhao Y, Cui H, Gu Y, Wang Y, Liu H, Xu G, Han Y. Appearance of [110] orientated growth layer on (100) face and exposure of (111) faces of cubic bismuth phosphate crystal. J Cryst Growth. 2015;426:248–54.

  18. 18.

    Han Z, Zhuang D, Yan H, Zhao H, Sun B, Li D, Sun Y, Hu W, Xuan Q, Chen J, Xiu Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of microbial calcites induced by cyanobacteria Synechocystis sp. PCC6803. J Therm Anal Calorim. 2017;127:1371–9.

  19. 19.

    He M, Jin H, Zhang L, Jiang H, Yang T, Cui H, Fossard F, Wagner JB, Karppinen M, Kauppinen EI, Loiseau A. Environmental transmission electron microscopy investigations of Pt–Fe2O3 nanoparticles for nucleating carbon nanotubes. Carbon. 2016;110:243–8.

  20. 20.

    Chen J, Chough SK, Han Z, Lee JH. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations (late Middle Cambrian to Furongian), Shandong Province, China: sequence–stratigraphic implications. Sediment Geol. 2011;233:129–49.

  21. 21.

    Chen J, Chough SK, Lee JH, Han Z. Sequence-stratigraphic comparison of the upper Cambrian Series 3 to Furongian succession between the Shandong region, China and the Taebaek area, Korea: high variability of bounding surfaces in an epeiric platform. Geosci J. 2012;16:357–79.

  22. 22.

    Yang R, Fan A, Han Z, Chi N, Han Y. Characteristics and genesis of microbial lumps in the Maozhuang Stage (Cambrian Series 2), Shandong Province, China. Sci China Earth Sci. 2013;56:494–503.

  23. 23.

    Yang R, Fan A, Han Z, Van Loon AJ. A marine or continental nature of the deltas in the early cretaceous Lingshandao formation-evidences from trace elements. Acta Geol Sin (Engl Ed). 2017;91:367–8.

  24. 24.

    Woo J, Chough SK, Han Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China. Palaios. 2008;23:55–64.

  25. 25.

    Park TY, June Moon S, Han Z, Choi D. Ontogeny of the middle cambrian trilobite Shantungia spinifera Walcott, 1905 from North China and its taxonomic significance. J Paleontol. 2008;82:851–5.

  26. 26.

    Han Z, Zhang X, Chi N, Han M, Woo J, Lee HS, Chen J. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonate Evaporite. 2015;30:373–86.

  27. 27.

    Chen J, Han Z, Zhang X, Fan A, Yang R. Early diagenetic deformation structures of the Furongian ribbon rocks in Shandong Province of China—a new perspective of the genesis of limestone conglomerates. Sci China Earth Sci. 2010;53:241–52.

  28. 28.

    Lee JH, Chen JT, Choh SJ, Lee DJ, Han ZZ, Chough SK. Furongian (Late Cambrian) sponge–microbial maze-like reefs in the North China Platform. Palaios. 2014;29:27–37.

  29. 29.

    Gao L, Han Z, Han Y, Han C, Wei F, Qin Z. Controlling of cements and physical property of sandstone by fault as observed in well Xia503 of Huimin sag, Linnan sub-depression. Sci China Earth Sci. 2013;56:1942–52.

  30. 30.

    Chen D, Mei J, Li H, Li Y, Lu M, Ma T, Ma Z. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour Technol. 2017;228:62–8.

  31. 31.

    Xu ZX, Wang Q, Zhu X, Fu XQ. Thermal stability of ammonium nitrate in high-temperature coal seam. J Therm Anal Calorim. 2017;130:1171–9.

  32. 32.

    Tian L, Chen H, Chen Z, Wang X, Zhang S. A study of non-isothermal kinetics of limestone decomposition in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres. J Therm Anal Calorim. 2014;115:45–53.

  33. 33.

    Zhang Y, Ma Z, Zhang Q, Wang J, Ma Q, Yang Y, Luo X, Zhang W. Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources. 2017;12:4652–69.

  34. 34.

    Hu L, Zhou C, Zhang C, Yue Y. Thermodynamic anomaly of the sub-T-g relaxation in hyperquenched metallic glasses. J Chem Phys. 2013;138:1–8.

  35. 35.

    Zhao H, Yan H, Dong S, Zhang Y, Sun B, Zhang C, Ai Y, Chen B, Liu Q, Sui T, Qin S. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J Therm Anal Calorim. 2013;111:1685–90.

  36. 36.

    Zhao H, Yan H, Zhang C, Sun B, Zhang Y, Dong S, Xue Y, Qin S. Thermogravimetry study of pyrolytic characteristics and kinetics of the giant wetland plant Phragmites australis. J Therm Anal Calorim. 2012;110:611–7.

  37. 37.

    Xu ZX, Wang Q, Fu XQ. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite. J Hazard Mater. 2015;300:702–10.

  38. 38.

    Xu ZX, Cheng JH, Wang Q, Cheng J, Hu X. The influence of dissociation reaction on ammonium nitrate thermal decomposition reaction. J Therm Anal Calorim. 2019;136:1415–24.

  39. 39.

    Chen J, Kwun Chough S, Chun SS, Han Z. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft-sediment deformation induced by storm-wave loading. Sedimentology. 2008;56:1174–95.

  40. 40.

    Chen J, Van Loon AJ, Han Z, Chough SK. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sediment Geol. 2009;221:1–6.

  41. 41.

    Han Z, Yu W, Zhao H, Zhao Y, Tucker M, Yan H. The significant roles of Mg/Ca ratio, Cl and SO42− in carbonate mineral precipitation by the halophile Staphylococcus epidermis Y2. Minerals. 2018;8:1–25.

  42. 42.

    Han Z, Gao X, Zhao H, Tucker M, Zhao Y, Bi Z, Pan J, Wu G, Yan H. Extracellular and intracellular biomineralization induced by Bacillus licheniformis DB1-9 at different Mg/Ca molar ratios. Minerals. 2018;8:1–26.

  43. 43.

    Du Q, Han Z, Shen X, Han C, Song Z, Gao L, Han M, Zhong W. Geochronology and geochemistry of Permo-Triassic sandstones in eastern Jilin Province (NE China): implications for final closure of the Paleo-Asian Ocean. Geosci Front. 2019;10:683–704.

  44. 44.

    Han C, Han M, Jiang Z, Han Z, Li H, Song Z, Zhong W, Liu K, Wang C. Source analysis of quartz from the Upper Ordovician and Lower Silurian black shale and its effects on shale gas reservoir in the southern Sichuan Basin and its periphery, China. Geol J. 2019;54:438–49.

  45. 45.

    Li Y, Chang X, Yin W, Sun T, Song T. Quantitative impact of diagenesis on reservoir quality of the Triassic Chang 6 tight oil sandstones, Zhenjing area, Ordos Basin, China. Mar Pet Geol. 2017;86:1014–28.

  46. 46.

    Li Y, Chang X, Yin W, Wang G, Zhang J, Shi B, Zhang J, Mao L. Quantitative identification of diagenetic facies and controls on reservoir quality for tight sandstones: a case study of the Triassic Chang 9 oil layer, Zhenjing area, Ordos Basin. Mar Pet Geol. 2019;102:680–94.

  47. 47.

    Van Loon AJ, Han Z, Han Y. Origin of the vertically orientated clasts in brecciated shallow-marine limestones of the Chaomidian Formation (Furongian, Shandong Province, China). Sedimentology. 2013;60:1059–70.

  48. 48.

    Fan A, Yang R, Van Loon AJ, Yin W, Han Z, Zavala C. Classification of gravity-flow deposits and their significance for unconventional petroleum exploration, with a case study from the Triassic Yanchang Formation (southern Ordos Basin, China). J Asian Earth Sci. 2018;161:57–73.

  49. 49.

    Du QX, Han ZZ, Shen XL, Han C, Song ZG, Gao LH, Han M, Zhong WJ, Yan JL. New evidence of detrital zircon ages for the final closure time of the Paleo-Asian Ocean in the eastern central asian orogenic belt (NE China). Acta Geol Sin Engl. 2017;91:1910–4.

  50. 50.

    Liu Q, Ai HM. Ultrasound promoted synthesis of arylmethylenemalonitriles catalyzed by melamine. J Chem Soc Pak. 2016;38:565–9.

  51. 51.

    Tian B, Qiao YY, Tian YY, Xie KC, Liu Q, Zhou HF. FTIR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent. Fuel Process Technol. 2016;154:210–8.

  52. 52.

    Wang JJ, Chen D, Xu Y, Liu QX, Zhang LY. Influence of the crystal texture on Raman spectroscopy of the AlN films prepared by pulse laser deposition. J Spectrosc. 2012;2013:1–6.

  53. 53.

    Wang ZW, Zhong XS, Wang P, Zhao JJ, Li Y. Synthesis and crystal Structure of 1D gadolinium(III) coordination polymer based on 5-oxyacetate isophthalic acid. Chin J Inorg Chem. 2011;27:1581–5.

  54. 54.

    Zhang XY, Ge SS, Shao Q, Liu M, Liu QY. Synthesis and photocatalytic activity of CeO2 hollow microspheres via yeast template route. Chin J Inorg Chem. 2016;32:1535–42.

  55. 55.

    Zhao L, Jiang N, Gan ZH. Polymorphic crystals from different thermal treatments and its effect on biodegradation behavior of poly(butylene adipate). Chem J Chin Univ. 2011;32:185–9.

  56. 56.

    Zhao L, Tian X, Liu X, He H, Zhang J, Zhang R. Miscibility and isothermal crystallization behavior of poly (butylene succinate-co-adipate) (PBSA)/Poly (trimethylene carbonate) (PTMC) blends. J Macromol Sci B. 2016;55:591–604.

  57. 57.

    Zhao L, Li Q, Zhang R, Tian X, Liu L. Effects of functionalized graphenes on the isothermal crystallization of poly(L-lactide) nanocomposites. Chin J Polym Sci. 2016;34:111–21.

  58. 58.

    Flynn JH, Wall AL. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B. 1966;4:323–8.

  59. 59.

    Kissinger HE, Reaction H. Kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

  60. 60.

    Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions—a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285:309–23.

  61. 61.

    Sathivel S, Huang J, Prinyawiwatkul W. Thermal properties and applications of the Arrhenius equation for evaluating viscosity and oxidation rates of unrefined pollock oil. J Food Eng. 2008;84:187–93.

  62. 62.

    Ha JW, Ryu H, Lee SJ, Lee WJ. Growth of hematite by using ultrasonic nebulizer pyrolysis for use in a photoelectrochemical electrode. J Korean Phys Soc. 2017;70:802–8.

  63. 63.

    Acikalin K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.

  64. 64.

    Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonateminerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.

  65. 65.

    González-Gómez WS, Quintana P, May-Pat A, Avilés F, May-Crespo J, Alvarado-Gil JJ. Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int J Rock Mech Min. 2015;75:182–9.

  66. 66.

    Slipenyuk A, Eckert J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr Mater. 2004;50:39–44.

  67. 67.

    Hartshorn SA, Sharp JH, Swamy RN. The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution. Cem Concr Compos. 2002;24:351–9.

  68. 68.

    Stojanovic A, Chen X, Jin N, Zhang T, Stojanovic F, Raeder S, Utheim TP. Safety and efficacy of epithelium-on corneal collagen cross-linking using a multifactorial approach to achieve proper stromal riboflavin saturation. J Ophthalmol. 2012;2012:1–8.

  69. 69.

    Koga N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta. 1994;244:1–20.

  70. 70.

    Han Z, Li D, Zhao H, Yan H, Li P. Precipitation of carbonate minerals induced by the halophilic Chromohalobacter Israelensis under high salt concentrations: implications for natural environments. Minerals. 2017;7:1–27.

  71. 71.

    Han Z, Meng R, Yan H, Zhao H, Han M, Zhao Y, Sun B, Sun Y, Wang J, Zhuang D, Li W, Lu L. Calcium carbonate precipitation by Synechocystis sp. PCC6803 at different Mg/Ca molar ratios under the laboratory condition. Carbonate Evaporite. 2017;32:561–75.

  72. 72.

    Zhuang D, Yan H, Tucker ME, Zhao H, Han Z, Zhao Y, Sun B, Li D, Pan J, Zhao Y, Meng R, Shan G, Zhang X, Tang R. Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: further insights into biotic and abiotic calcite. Chem Geol. 2018;500:64–87.

  73. 73.

    Han Z, Wang J, Zhao H, Tucker ME, Zhao Y, Wu G, Zhou J, Yin J, Zhang H, Zhang X, Yan H. Mechanism of biomineralization induced by Bacillus subtilis J2 and characteristics of the biominerals. Minerals. 2019;9:1–27.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1663201, 41772095, 41702131), the Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology (MMRZZ201804), Taishan Scholar Talent Team Support Plan for Advanced &Unique Discipline Areas, Major Scientific and Technological Innovation Projects of Shandong Province (2017CXGC1602, 2017CXGC1603), Natural Science Foundation of Shandong Province (ZR2019MD027, ZR2017BD001), SDUST Research Fund (2015TDJH101), the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13), Program for Graduate Science and Technology Innovation of Shandong University of Science and Technology (No. 2333).

Author information

Correspondence to Zuozhen Han or Hui Zhao or Huaxiao Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Zhuang, D., Zhao, H. et al. Comparative study on thermal behaviors between micrites and thrombolites using thermogravimetric analysis. J Therm Anal Calorim 139, 1229–1242 (2020). https://doi.org/10.1007/s10973-019-08559-0

Download citation

Keywords

  • Thrombolite
  • Micrite
  • Activation energy
  • Thermal decomposition
  • Kinetics
  • TG–DTG–DSC