Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 1463–1478 | Cite as

Non-isothermal pyrolysis of grape marc

Thermal behavior, kinetics and evolved gas analysis
  • Enelio Torres-Garcia
  • Paola BrachiEmail author


The non-isothermal decomposition behavior of grape marc (GM) residues from wine industry was investigated by using different thermal analysis techniques, including: (1) thermogravimetric analysis/differential thermogravimetry (TGA-DTG) to study the thermal decomposition kinetics; (2) thermogravimetry (TG-DTG) coupled with Fourier transform infrared spectroscopy (FTIR) to investigate the nature of the gas-phase products released during the pyrolytic breakdown; and (3) simultaneous thermogravimetry/differential scanning calorimetry (TGA–DSC) analysis to obtain information on the heat flows associated with the thermal decomposition of grape marc. Thermogravimetric measurements at five different heating rates (i.e., 2.5, 5, 10, 20, 40 K min−1) were performed for the kinetic computations, which were carried out by adopting a “model-free” approach based on the application of isoconversional methods. In more details, two different integral methods, i.e., the linear Ozawa–Flynn–Wall (OFW) method and the nonlinear Vyazovkin incremental method, were comparatively used in order to obtain a set of kinetic parameters useful for the conceptual design of thermochemical processes involving grape marc. The reliability of the obtained parameters was confirmed by the successful application of the same data to reproduce experimental TG curves not included in the kinetic computations. The effect of the heating rate on the nature of the gas-phase products arising from grape marc decomposition as well as on the heat flows associated with the pyrolytic process was also investigated. Finally, the study was complemented with an extensive investigation on chemical and physical properties of grape marc residues (i.e., ultimate analysis, proximate analysis, calorific values determination, FTIR analysis and cellulose, hemicellulose and lignin content determination), which provides useful input data for modeling grape march conversion processes.


Kinetic analysis Agro-industrial residues TGA–DSC TGA–FTIR Isoconversional method Grape marc Evolved gas analysis 



  1. 1.
    Hussain M, Cholette S, Castaldi RM. J Global Market. 2008;21:33–47.Google Scholar
  2. 2.
    Mattsson B, Sonesson U. Environmentally-friendly food processing. 1st ed. Cambridge: Woodhead Publishing; 2003.Google Scholar
  3. 3.
    Amico V, Napoli EM, Renda A, Ruberto G, Spatafora C, Tringali C. Food Chem. 2004;88:599–607.Google Scholar
  4. 4.
    Galanakis CM. Handbook of grape processing by-products: sustainable solutions. London: Academic Press; 2017.Google Scholar
  5. 5.
    Singh-Nee NP, Pandey A. Biotechnology for agro-industrial residues utilization. Dordrecht: Springer; 2009.Google Scholar
  6. 6.
    Baumgartel T, Kluth H, Epperlein K, Rodehutscord M. Small Rumin Res. 2007;67:302–6.Google Scholar
  7. 7.
    Schieber A, Stintzing FC, Carle R. Trends Food Sci Technol. 2001;12:401–13.Google Scholar
  8. 8.
    Hang YD, Lee CY, Woodams EE. Biotechnol Lett. 1986;8(53-5):6.Google Scholar
  9. 9.
    Hang YD, Woodams EE. Biotechnol Lett. 1985;7:253–4.Google Scholar
  10. 10.
    Negro C, Tommasi L, Miceli L. Bioresour Technol. 2003;87:41–4.PubMedGoogle Scholar
  11. 11.
    Llobera A, Cañellas J. Food Chem. 2007;101:659–66.Google Scholar
  12. 12.
    Basso D, Patuzzi F, Castello D, Baratieri M, Rada EC, Weiss-Hortala E, Fiori L. Waste Manage. 2016;47:114–21.Google Scholar
  13. 13.
    Petrović N, Perišić JD, Maksimović V, Maksimović M, Kragović M, Stojanović M, Lauševil M, Mihajlovi M. J Anal Appl Pyrol. 2016;118:267–77.Google Scholar
  14. 14.
    Lapuerta M, Hernández JJ, Pazo A, López J. Fuel Process Technol. 2008;89:828–37.Google Scholar
  15. 15.
    Miranda MT, Arranz JI, Román S, Rojas S, Montero I, López M, Cruz JA. Fuel Process Technol. 2011;92:278–83.Google Scholar
  16. 16.
    Miranda T, Román S, Montero I, Nogales-Delgado S, Arranz JI, Rojas CV, González JF. Fuel Process Technol. 2012;103:160–5.Google Scholar
  17. 17.
    Casazza AA, Aliakbarian B, Lagazzo A, Garbarino G, Carnasciali MM, Perego P, Busca G. Fuel Process Technol. 2016;153:121–8.Google Scholar
  18. 18.
    Botelhoa T, Costa M, Wilk M, Magdziarz A. Fuel. 2018;212:95–100.Google Scholar
  19. 19.
    Junges J, Carvalho Collazzo G, Perondi D, et al. Therm Anal Calorim. 2018;134:2329–38.Google Scholar
  20. 20.
    dos Reis Ferreira RA, da Silva Meireles C, Assunção RMN, et al. J Therm Anal Calorim. 2018;132:1535–44.Google Scholar
  21. 21.
    Brachi P, Miccio F, Miccio M, Ruoppolo G. Fuel Process Technol. 2015;130:147–54.Google Scholar
  22. 22.
    Brachi P, Miccio F, Miccio M, Ruoppolo G. Fuel Process Technol. 2016;154:243–50.Google Scholar
  23. 23.
    Adiletta G, Brachi P, Riianova E. et al. Waste Biomass Valor. (2019). In press.
  24. 24.
    Vyazovkin S, Sbirrazzuoli N. Macromol Rapid Commun. 2006;27:1515–32.Google Scholar
  25. 25.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. Thermochim Acta. 2011;520:1–19.Google Scholar
  26. 26.
    Ozawa T. B Chem Soc Jpn. 1965;38:1881–6.Google Scholar
  27. 27.
    Trache D, Abdelaziz A, Siouani B. J Therm Anal Calorim. 2017;128:335–48.Google Scholar
  28. 28.
    Zhao H, Yan H, Dong S, Zhang Y, Sun B, Zhang C, Qin S. J Therm Anal Calorim. 2013;111:1685–90.Google Scholar
  29. 29.
    Han Z, Zhuang D, Yan H, Zhao H, Sun B, Li D, Sun Y, Hu W, et al. J Therm Anal Calorim. 2017;127:1371–9.Google Scholar
  30. 30.
    Zhao H, Yan H, Zhang C, et al. J Therm Anal Calorim. 2012;110:611–7.Google Scholar
  31. 31.
    Lwin Y. Int J Eng Educ. 2000;16:335–9.Google Scholar
  32. 32.
    Viazovkyn S. Int J Chem Kinet. 1996;28:95–101.Google Scholar
  33. 33.
    Hyndmana RJ, Koehler AB. Int J Forecast. 2006;22:679–88.Google Scholar
  34. 34.
    Pouchert JC. The Aldrich Library of FT-IR. 1st ed. Milwaukee: Aldrich Chemical Company Inc; 1989.Google Scholar
  35. 35.
    Zapata B, Balmaseda J, Fregoso-Israel E, Torres-Garcia E. J Therm Anal Calorim. 2009;98:309–15.Google Scholar
  36. 36.
    Brachi P, Riianova E, Miccio M, Miccio F, Ruoppolo G, Chirone R. Energy Fuels. 2017;31:9595–604.Google Scholar
  37. 37.
    Bellamy LJ. The infrared spectra of complex molecules. London: Methuen & Co LTD; 1959.Google Scholar
  38. 38.
    Xiong F, Han Y, Wang S, Li G, Qin T, Chen Y, Chu F. ACS Sustain Chem Eng. 2017;5:2273–81.Google Scholar
  39. 39.
    Badot PM, Crini G. Sorption processes and pollution: conventional and non-conventional sorbents for pollutant removal from wastewaters. Besançon: Presses Universitaires de Franche-Comté; 2010.Google Scholar
  40. 40.
    Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A. Carbohydr Polym. 2000;43:195–203.Google Scholar
  41. 41.
    Jin AX, Ren JL, Peng F, Xu F, Zhou GY, Sun RC, Kennedy JF. Carbohydr Polym. 2009;78:609–19.Google Scholar
  42. 42.
    Arenillas A, Pevida C, Rubiera F, Garcıa R, Pis J. J Anal Appl Pyrol. 2004;71:747–63.Google Scholar
  43. 43.
    Galano A, Aburto J, Sadhukhan J, Torres-García E. J Anal Appl Pyrol. 2017;128:208–16.Google Scholar
  44. 44.
    Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. J Anal Appl Pyrol. 2013;99:170–7.Google Scholar
  45. 45.
    Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman R. Ind Biotechnol. 2011;7:384–401.Google Scholar
  46. 46.
    Chen WH, Peng J, Bi XT. Renew Sustain Energy Rev. 2015;44:847–66.Google Scholar
  47. 47.
    Heydari M, Rahman M, Gupta R. Int J Chem Eng. 2015;2015:1–9.Google Scholar
  48. 48.
    Aburto J, Moran M, Galano A, Torres-García E. J Anal Appl Pyrol. 2015;11:94–104.Google Scholar
  49. 49.
    Miranda R, Bustos-Martinez D, Sosa Blanco C, Gutièrrez Villarreal MH, Rodrigues Cantù ME. J Anal Appl Pyrol. 2009;86:245–51.Google Scholar
  50. 50.
    Leng Y. Material characterization: introduction to microscopic and spectroscopic methods. Singapore: John Wiley & Sons (Asia) Pte Ltd; 2008.Google Scholar
  51. 51.
    Yang H, Yan R, Chen H, Ho Lee D, Zheng C. Fuel. 2007;86:1781–8.Google Scholar
  52. 52.
    Milosavljevic I, Oja V, Suuberg EM. Ind Eng Chem Res. 1996;35:653–62.Google Scholar
  53. 53.
    Mok WSL, Antal MJ Jr. Thermochim Acta. 1983;68:165–86.Google Scholar
  54. 54.
    Cho J, Davis JM, Huber GW. Chemsuschem. 2010;3:1162–5.PubMedGoogle Scholar
  55. 55.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 5th ed. Hoboken: Wiley; 1997.Google Scholar
  56. 56.
    Yeo JY, Chin BLF, Tan JK, Loh YS. J Energy Inst. (2017) In press. Scholar
  57. 57.
    Mohan M, Gupta NK, Kumar M. Inorg Chim Acta. 1992;197:39–46.Google Scholar
  58. 58.
    Cervantes-Uc JM, Cauich-Rodríguez JV, Vázquez-Torres H, Garfias Mesías LF, Paul DR. Thermochim Acta. 2007;457:92–102.Google Scholar
  59. 59.
    Brachi P, Chirone R, Miccio F, Miccio M, Picarelli A, Ruoppolo G. Fuel. 2015;128:88–98.Google Scholar
  60. 60.
    Kalogiannis KG, Stefanidis SD, Michailof CM, Lappas AA, Sjöholm E. J Anal Appl Pyrol. 2015;115:410–8.Google Scholar
  61. 61.
    Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A. Carbohydr Polym. 2000;43:195–203.Google Scholar
  62. 62.
    Grigiante M, Brighenti M, Antolini D. Renew Energy. 2016;99:1318–26.Google Scholar
  63. 63.
    Grigiante M, Brighenti M, Antolini D. J Therm Anal Calorim. 2017;129:553–65.Google Scholar
  64. 64.
    Dong Z, Cai J. J Energy Inst. 2018;91:513–8.Google Scholar
  65. 65.
    Chen T, Cai J, Liu R. Sour Recovery Util Environ Eff. 2015;37:2208–17.Google Scholar
  66. 66.
    Sharara M, Sadaka S. J Sustain Bioenergy Syst. 2014;4:75–86.Google Scholar
  67. 67.
    Slopiecka K, Bartocci P, Fantozzi F. Appl Energy. 2012;97:491–7.Google Scholar
  68. 68.
    Mamleev V, Bourbigot S, Le Bras M, Yvon J, Lefebvre J. Chem Eng Sci. 2006;61:1276–92.Google Scholar
  69. 69.
    Aboyade AO, Hugo TJ, Carrier M, Meyer EL, Stahl R, Knoetze JH, Görgens JF. Thermochim Acta. 2011;517:81–9.Google Scholar
  70. 70.
    Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AW. Renew Sustain Energy Rev. 2017;82:2705–15.Google Scholar
  71. 71.
    Carrier M, Auret L, Bridgwater A, Knoetze JH. Energy Fuel. 2016;30:7834–41.Google Scholar
  72. 72.
    Hache F, Delichatsios M, Fateh T, Zhang J. J Fire Sci. 2015;33:232–46.Google Scholar
  73. 73.
    Šimon P. J Therm Anal Calorim. 2004;76:123–32.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Biomass Conversion Management DepartmentInstituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas NorteMexico CityMexico
  2. 2.Institute for Research on Combustion, National Research CouncilNaplesItaly

Personalised recommendations