Framing the novel aspects of irreversibilty in MHD flow of Williamson nanomaterial with thermal radiation near stagnation point

  • 37 Accesses


Here, MHD stagnation point flow of non-Newtonian fluid over a stretchable surface is considered. Process of modeling is characterized for basic relations of non-Newtonian Williamson fluid. Nanofeatures for thermophoresis and random movement of liquid particles present. Applied magnetic field for small Reynolds number is considered. Induced magnetic field is not accounted. Entropy equation is studied in the presence of Ohmic heating, radiation and dissipation. The carried out analysis reduces the PDE systems into the ODE systems with nonlinearity. The obtained nonlinear ODE systems are solved utilizing modern way of solution technique known as the built-in-Shooting method. Furthermore, total entropy rate is calculated via second law of thermodynamics. Velocity, entropy rate, temperature, Nusselt number, mass concentration, skin friction and Sherwood number are discussed through different physical parameters. Key observations of the whole study are listed.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27


  1. 1.

    Sun HG, Zhang Y, Baleanu D, Chen W, Chen YQ. A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul. 2018;64:213–31.

  2. 2.

    Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T. Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf. 2016;99:702–10.

  3. 3.

    Hayat T, Khan MI, Farooq M, Yasmeen T, Alsaedi A. Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. J Mol Liq. 2016;220:45–9.

  4. 4.

    Khandavalli S, Rothstein JP. Ink transfer of non-Newtonian fluids from an idealized gravure cell: the effect of shear and extensional deformation. J Non-Newtonian Fluid Mech. 2017;243:16.

  5. 5.

    Marschik C, Roland W, Löw-Baselli B, Miethlinger J. A heuristic method for modeling three-dimensional non-Newtonian flows of polymer melts in single-screw extruders. J Non-Newtonian Fluid Mech. 2017;248:27–39.

  6. 6.

    Turkyilmazoglu M. Analytical solutions to mixed convection MHD fluid flow induced by a nonlinearly deforming permeable surface. Commun Nonlinear Sci Numer Simul. 2018;63:373–9.

  7. 7.

    Khan MI, Waqas M, Hayat T, Alsaedi A. A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J Colloid Interface Sci. 2017;498:85–90.

  8. 8.

    Khan NB, Ibrahim Z, Khan MI, Hayat T, Javed MF. VIV study of an elastically mounted cylinder having low mass-damping ratio using RANS model. Int J Heat Mass Transf. 2018;121:309–14.

  9. 9.

    Hsiao KL. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method. Energy. 2017;130:486–99.

  10. 10.

    Khan MI, Waqas M, Hayat T, Alsaedi A, Khan MI. Significance of nonlinear radiation in mixed convection flow of magneto Walter-B nanoliquid. Int J Hydrog Energy. 2017;42:26408–16.

  11. 11.

    Hayat T, Khan MI, Qayyum S, Alsaedi A, Khan MI. New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials. Phys Lett A. 2018;382:749–60.

  12. 12.

    Hsiao KL. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Appl Thermal Eng. 2017;112:1281–8.

  13. 13.

    Tamoor M, Waqas M, Khan MI, Alsaedi A, Hayat T. Magnetohydrodynamic flow of Casson fluid over a stretching cylinder. ResultsPhys. 2017;7:498–502.

  14. 14.

    Hsiao KL. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int J Heat Mass Transf. 2017;112:983–90.

  15. 15.

    Waqas M, Khan MI, Hayat T, Alsaedi A, Khan MI. Nonlinear thermal radiation in flow induced by a slendering surface accounting thermophoresis and Brownian diffusion. Eur Phys J Plus. 2017;132:280.

  16. 16.

    Hayat T, Khan MWA, Alsaedi A, Khan MI. Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat generation/absorption. Colloid Polymer Sci. 2017;295:967–75.

  17. 17.

    Hayat T, Qayyum S, Khan MI, Alsaedi A. Modern developments about statistical declaration and probable error for skin friction and Nusselt number with copper and silver nanoparticles. Chin J Phys. 2017;55:2501–13.

  18. 18.

    Hsiao KL. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl Thermal Eng. 2016;98:850–61.

  19. 19.

    Turkyilmazoglu M. Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. Int J Heat Mass Transf. 2018;126:974–9.

  20. 20.

    Reddy GJ, Raju RS, Rao GA. Influence of viscous dissipation on unsteady MHD natural convective flow of Casson fluid over an oscillating vertical plate via FEM. Ain Sham Eng J. 2018;9:1907–15.

  21. 21.

    Khan MI, Sumaira S, Hayat T, Waqas M, Khan MI, Alsaedi A. Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial. J Mol Liq. 2018;259:274–83.

  22. 22.

    Khan MI, Waqas M, Hayat T, Khan MI, Alsaedi A. Numerical simulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions in convective flow by a variable thicked surface. J Mol Liq. 2017;246:259–67.

  23. 23.

    Esfe MH, Rejvani M, Karimpour R, Arani AAA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorimet. 2017;128:1359–71.

  24. 24.

    Turkyilmazoglu M. Fluid flow and heat transfer over a rotating and vertically moving disk. Phys Fluid. 2018;30:063605.

  25. 25.

    Antonovič V, Kerienė J, Spudulis E, Stonys R, Boris R. Investigation of ageing of alumina cement-based mixtures using thermal analysis and calorimetry. J Therm Anal Calorimet. 2017;130:35–44.

  26. 26.

    Williamson RV. The flow of pseudoplastic materials. Ind Eng Chem Res. 1929;1929(21):1108.

  27. 27.

    Cramer SD, Marchello JM. Numerical evaluation of models describing non-Newtonian behavior. Am Inst Chem Eng J. 1968;14:980.

  28. 28.

    Khan MI, Hayat T, Waqas M, Khan MI, Alsaedi A. Entropy generation minimization (EGM) in nonlinear mixed convective flow of nanomaterial with Joule heating and slip condition. J Mol Liq. 2018;256:108–20.

  29. 29.

    Turkyilmazoglu M. Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions. Phys Fluid. 2016;28:043102.

  30. 30.

    Khan MI, Ullah S, Hayat T, Khan MI, Alsaedi A. Entropy generation minimization (EGM) for convection nanomaterial flow with nonlinear radiative heat flux. J Mol Liq. 2018;260:279–91.

  31. 31.

    Turkyilmazoglu M. Convergence accelerating in the homotopy analysis method: a new approach. Adv Appl Math Mech. 2018;10:925–47.

  32. 32.

    Khan MI, Qayyum S, Hayat T, Khan MI, Alsaedi A, Khan TA. Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection. Phys Lett A. 2018;382:2017–26.

  33. 33.

    Jahanbakhshi A, Nadooshan AA, Bayareh M. Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. J Therm Anal Calorim. 2018;133:1407–16.

  34. 34.

    Xu B, Zhang C, Chen C, Zhou J, Lu C, Ni Z. One-step synthesis of CuS-decorated MWCNTs/paraffin composite phase change materials and their light–heat conversion performance. J Therm Anal Calorim. 2018;133:1417–28.

  35. 35.

    Hayat T, Khan MI, Alsaedi A, Khan MI. Joule heating and viscous dissipation in flow of nanomaterial by a rotating disk. Int Commun Heat Mass Transf. 2017;89:190–7.

  36. 36.

    Ternik P. New contributions on laminar flow of inelastic non-Newtonian fluid in the two-dimensional symmetric expansion: creeping and slowly moving flow conditions. J Non-Newtonian Fluid Mech. 2010;165:1400–11.

  37. 37.

    Hayat T, Khan MI, Imtiaz M, Alsaedi A. Heat and mass transfer analysis in the stagnation region of Maxwell fluid with chemical reaction over a stretched surface. J Therm Sci Eng Appl. 2018;10:011002.

  38. 38.

    Khan MI, Waqas M, Hayat T, Alsaedi A. Magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a stretched surface with homogeneous-heterogeneous reactions. J Theor Comput Chem. 2017;16:1750022.

  39. 39.

    Veiga HBD, Yang J. On the energy equality for solutions to Newtonian and non-Newtonian fluids. Nonlinear Anal. 2019;185:388–402.

  40. 40.

    Hayat T, Salman S, Khan MI, Alsaedi A. Simulation of ferromagnetic nanomaterial flow of Maxwell fluid. Results Phys. 2018;8:34–40.

  41. 41.

    Silva KCD, Silva IDJD, Calçada LA, Scheid CM. The effect of previous sedimentation on the filtration and mudcake properties of Newtonian and non-Newtonian fluids. Powder Technol. 2019;346:9–16.

  42. 42.

    Khan MI, Yasmeen T, Khan MI, Farooq M, Wakeel M. Research progress in the development of natural gas as fuel for road vehicles: a bibliographic review (1991–2016). Renew Sustain Energy Rev. 2016;66:702–41.

  43. 43.

    Jiang XF, Zhu C, Li ZH. Bubble pinch-off in Newtonian and non-Newtonian fluids. Chem Eng Sci. 2017;170:98–104.

  44. 44.

    Hayat T, Khan MI, Qayyum S, Alsaedi A. Entropy generation in flow with silver and copper nanoparticles. Colloid Surf A Physicochem Eng Aspect. 2018;539:335–46.

  45. 45.

    Kefayati GR, Tang H, Chan A, Wang X. A lattice Boltzmann model for thermal non-Newtonian fluid flows through porous media. Comput Fluid. 2018;176:226–44.

  46. 46.

    Khan MI, Hayat T, Khan MI, Alsaedi A. Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid. Int Commun Heat Mass Transf. 2018;91:216–24.

  47. 47.

    Hayat T, Aslam N, Khan MI, Khan MI, Alsaedi A. Physical significance of heat generation/absorption and Soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel. J Mol Liq. 2019;275:599–615.

  48. 48.

    Sheikholeslami M, Saleem S, Shafee A, Li Z, Hayat T, Alsaedi A, Khan MI. Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Comput Method Appl Mech Eng. 2019;349:839–58.

  49. 49.

    Hayat T, Muhammad K, Khan MI, Alsaedi A. Theoretical investigation of chemically reactive flow of water based carbon nanotubes with melting heat transfer. Pramana J Phys. 2019;92:57.

  50. 50.

    Khan MI, Hayat T, Khan MI, Waqas M, Alsaedi A. Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation. J Phys Chem Solid. 2019;125:153–64.

  51. 51.

    Yih KA. Free convection effect on MHD coupled heat and mass transfer of a moving permeable vertical surface. Int Commun Heat Mass Transf. 1999;26:95–104.

Download references

Author information

Correspondence to M. Ijaz Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Qayyum, S., Waqas, M. et al. Framing the novel aspects of irreversibilty in MHD flow of Williamson nanomaterial with thermal radiation near stagnation point. J Therm Anal Calorim 139, 1291–1299 (2020) doi:10.1007/s10973-019-08524-x

Download citation


  • MHD Williamson nanofluid
  • Activation energy
  • Entropy generation
  • Viscous dissipation
  • Radiative heat flux
  • Ohmic heating