Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 923–931 | Cite as

Investigation on the structure, fluoride vaporization and crystallization behavior of CaF2–CaO–Al2O3–(SiO2) slag for electroslag remelting

  • Yu Liu
  • Yong Wang
  • Guangqiang LiEmail author
  • Cheng Yuan
  • Ru Lu
  • Baokuan Li


The structure, vaporization behavior and crystallization of CaF2–CaO–Al2O3 slags with different SiO2 contents for electroslag remelting were investigated by employing the TG and DSC measurements in conjunction with the Raman spectroscopy measurement for linking the macroscopic physicochemical property and microstructure information. The results show that SiO2 addition makes the depolymerized aluminate units polymerized into fully polymerized QAl4 unit and Al–O–Al complex structural groups. With the SiO2 content increasing to 6.1 mass%, the vaporization rate of fluoride increases because the SiF4 possessing higher vapor pressure is formed and the SiO2 addition can promote the formation of AlF3. As SiO2 content is further increased to 8.6 mass%, the vaporization rate of fluoride decreases because the mass transfer becomes slower. The more complex slag structure resulted from SiO2 addition dramatically decreases the crystallization temperature of the primary crystalline phase and the size of crystalline particles in the solidified slag.


SiO2 addition Slag structure Vaporization Crystallization Electroslag remelting 



The authors gratefully acknowledge the support from the Key Program of Joint Funds of the National Natural Science Foundation of China and the Government of Liaoning Province (Grant No. U1508214) and the National Natural Science Foundation of China (Grant No. 51210007).


  1. 1.
    Li B, Wang Q, Wang F, Chen M. A coupled cellular automaton-finite-element mathematical model for the multiscale phenomena of electroslag remelting H13 die steel ingot. JOM. 2014;66:1153–65.CrossRefGoogle Scholar
  2. 2.
    Liu Y, Zhang Z, Li G, Wang Q, Wang L, Li B. Evolution of desulfurization and characterization of inclusions in dual alloy ingot processed by electroslag remelting. Steel Res Int. 2017;88:e201700058. Scholar
  3. 3.
    Liu Y, Wang X, Li G, Wang Q, Zhang Z, Li B. Role of vacuum on cleanliness improvement of steel during electroslag remelting. Vacuum. 2018;154:351–8.CrossRefGoogle Scholar
  4. 4.
    Shi CB, Li J, Cho JW, Jiang F, Jung IH. Effect of SiO2 on the crystallization behaviors and in-mold performance of CaF2–CaO–Al2O3 slags for drawing-ingot-type electroslag remelting. Metall Mater Trans B. 2015;46:2110–20.CrossRefGoogle Scholar
  5. 5.
    Jiang ZH. Electroslag metallurgy. Beijing: Science Press; 2015.Google Scholar
  6. 6.
    Li ZB. Electroslag metallurgy theory and practice. Beijing: Metallurgical Industry Press; 2010.Google Scholar
  7. 7.
    Zheng DL, Li J, Shi CB, Ju JT. Effect of TiO2 on the crystallisation behaviour of CaF2–CaO–Al2O3–MgO slag for electroslag remelting of Ti-containing tool steel. Ironmak Steelmak. 2016;45:135–44.CrossRefGoogle Scholar
  8. 8.
    Shi CB, Cho J, Zheng DL, Li J. Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels. Int J Min Met Mater. 2016;23:627–36.CrossRefGoogle Scholar
  9. 9.
    Liu Y, Li G, Wang L, Zhang Z. Effect of the tundish gunning materials on the steel cleanliness. High Temp Mater Proc. 2018;37:1–11.CrossRefGoogle Scholar
  10. 10.
    Allibert M, Wadier J, Mitchell A. Use of SiO sub 2-containing slags in electroslag remelting. Ironmak Steelmak. 1978;5:211–6.Google Scholar
  11. 11.
    Zhou L, Wang W, Ma F, Li J, Wei J, Matsuura H. A kinetic study of the effect of basicity on the mold fluxes crystallization. Metall Mater Trans B. 2012;43:354–62.CrossRefGoogle Scholar
  12. 12.
    Kashiwaya Y, Cicutti CE, Cramb AW. An investigation of the crystallization of a continuous casting mold slag using the single hot thermocouple technique. ISIJ Int. 1998;38:357–65.CrossRefGoogle Scholar
  13. 13.
    Lu B, Wang W, Li J, Zhao H, Huang D. Effects of basicity and B2O3 on the crystallization and heat transfer behaviors of low fluorine mold flux for casting medium carbon steels. Metall Mater Trans B. 2013;44:365–77.CrossRefGoogle Scholar
  14. 14.
    Watanabe T, Hashimoto H, Hayashi M, Nagata K. Effect of alkali oxides on crystallization in CaO–SiO2–CaF2 glasses. ISIJ Int. 2008;48:925–33.CrossRefGoogle Scholar
  15. 15.
    Dubrawski J, Camplin J. Crystallization of mould powders used in the continuous casting of steel. J Therm Anal Calorim. 1993;40:329–34.CrossRefGoogle Scholar
  16. 16.
    Persson M, Seetharaman S, Seetharaman S. Kinetic studies of fluoride evaporation from slags. ISIJ Int. 2007;47:1711–7.CrossRefGoogle Scholar
  17. 17.
    Brandaleze E, Valentini M, Santini L, Benavidez E. Study on fluoride evaporation from casting powders. J Therm Anal Calorim. 2018;133:271–7.CrossRefGoogle Scholar
  18. 18.
    Liu Y, Zhang Z, Li G, Wu Y, Xu D, Li B. Investigation of fluoride vaporization from CaF2–CaO–Al2O3 slag for vacuum electroslag remelting. Vacuum. 2018;158:6–13.CrossRefGoogle Scholar
  19. 19.
    Kim TS, Park JH. Structure–viscosity relationship of low-silica calcium aluminosilicate melts. ISIJ Int. 2014;54:2031–8.CrossRefGoogle Scholar
  20. 20.
    Mcmillan P, Piriou B. Raman spectroscopy of calcium aluminate glasses and crystals. J Non Cryst Solids. 1983;55:221–42.CrossRefGoogle Scholar
  21. 21.
    Shi C, Zheng D, Shin S, Li J, Cho J. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int J Min Met Mater. 2017;24:18–24.CrossRefGoogle Scholar
  22. 22.
    Licheron M, Montouillout V, Millot F, Neuville DR. Raman and 27Al NMR structure investigations of aluminate glasses: (1 − x)Al2O3–xMO, with M = Ca, Sr, Ba and 0.5 < x < 0.75. J Non-Cryst Solids. 2011;357:2796–801.CrossRefGoogle Scholar
  23. 23.
    Higby PL, Ginther RJ, Aggarwal ID, Friebele EJ. Glass formation and thermal properties of low-silica calcium aluminosilicate glasses. J Non Cryst Solids. 1990;126:209–15.CrossRefGoogle Scholar
  24. 24.
    Hyun PJ. Structure–property correlations of CaO–SiO2–MnO slag derived from Raman spectroscopy. ISIJ Int. 2012;52:1627–36.CrossRefGoogle Scholar
  25. 25.
    Hyun PJ. Composition-structure-property relationships of CaO–MO–SiO2 (M = Mg2+, Mn2+) systems derived from micro-Raman spectroscopy. J Non Cryst Solids. 2012;358:3096–102.CrossRefGoogle Scholar
  26. 26.
    Park JH. Structure–property relationship of CaO–MgO–SiO2 slag: quantitative analysis of Raman spectra. Metall Mater Trans B. 2013;44:938–47.CrossRefGoogle Scholar
  27. 27.
    Mills K, Guo M. The importance of materials properties in high-temperature processes. ISIJ Int. 2014;54:2000–7.CrossRefGoogle Scholar
  28. 28.
    Neuville DR, Cormier L, Flank AM, Briois V, Massiot D. Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy. Chem Geol. 2004;213:153–63.CrossRefGoogle Scholar
  29. 29.
    Allwardt JR, Lee SK, Stebbins JF. Bonding preferences of non-bridging O atoms: evidence from 17O MAS and 3QMAS NMR on calcium aluminate and low-silica Ca-aluminosilicate glasses. Am Mineral. 2003;88(7):949–54.CrossRefGoogle Scholar
  30. 30.
    Zhang GH, Chou KC, Mills K. Modelling viscosities of CaO–MgO–Al2O3–SiO2 molten slags. ISIJ Int. 2012;52(3):355–62.CrossRefGoogle Scholar
  31. 31.
    Zhang GH, Chou KC, Mills K. A structurally based viscosity model for oxide melts. Metall Mater Trans B. 2014;45(2):698–706.CrossRefGoogle Scholar
  32. 32.
    Yang XM, Shi CB, Zhang M, Chai G, Wang F. A thermodynamic model of sulfur distribution ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 slags and molten steel during LF refining process based on the ion and molecule coexistence theory. Metall Mater Trans B. 2011;42:1150–80.CrossRefGoogle Scholar
  33. 33.
    Yang XM, Shi CB, Zhang M, Duan JP, Zhang J. A thermodynamic model of phosphate capacity for CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 slags equilibrated with molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B. 2011;42:951–77.CrossRefGoogle Scholar
  34. 34.
    Yang XM, Duan JP, Shi CB, Zhang M, Zhang YL, Wang JC. A thermodynamic model of phosphorus distribution ratio between CaO–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 slags and molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B. 2011;42:738–70.CrossRefGoogle Scholar
  35. 35.
    Yang XM, Shi CB, Zhang M, Zhang J. A thermodynamic model for prediction of iron oxide activity in some FeO-containing slag systems. Steel Res Int. 2012;83:244–58.CrossRefGoogle Scholar
  36. 36.
    Hou D, Jiang Z, Dong Y, Cao Y, Cao H, Gong W. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmak Steelmak. 2016;43:517–25.CrossRefGoogle Scholar
  37. 37.
    Jiang ZH, Hou D, Dong YW, Cao YL, Cao HB, Gong W. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B. 2016;47(2):1465–74.CrossRefGoogle Scholar
  38. 38.
    Nafziger R. The system CaF2–CaO–Al2O3 under one-third atmosphere of helium. High Temp Sci. 1973;5(6):414–22.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Yu Liu
    • 1
    • 2
  • Yong Wang
    • 2
  • Guangqiang Li
    • 1
    • 2
    • 3
    Email author
  • Cheng Yuan
    • 2
  • Ru Lu
    • 2
  • Baokuan Li
    • 4
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of EducationWuhan University of Science and TechnologyWuhanChina
  3. 3.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  4. 4.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations