Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 817–822 | Cite as

The heating–cooling rate effect on thermal properties of high nickel-rich NiTi shape memory alloy

  • Irfan KayaEmail author
  • Yalçın Özdemir
  • Eren Kaya
  • Mehmet Emin Keskin


In this study, the effects of heating and cooling rate on the thermal properties of high nickel-rich Ni55Ti45 shape memory alloy were investigated. Transformation temperatures and enthalpies were determined by differential scanning calorimetry. R-phase was observed with two-stage phase transformation during cooling. Transformation finish temperatures were affected, while the transformation start temperatures were not changed by heating–cooling rate. Kissinger, Takhor, and Ozawa methods were applied to find activation energy that is needed for phase transformation. The average activation energy value of 200.5 kJ mol−1 was calculated for Ni55Ti45 alloy. The calculated activation energy was found lower than the ones reported in the literature.


Ni-rich NiTi Shape memory alloy Heating rate effect Activation energy Thermal properties 



First author acknowledges the support from Eskisehir Technical University (Grant No. BAP-1706F382).


  1. 1.
    Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678.CrossRefGoogle Scholar
  2. 2.
    Aboutalebi MR, Karimzadeh M, Salehi MT, Abbasi SM, Morakabati M. Influences of aging and thermomechanical treatments on the martensitic transformation and superelasticity of highly Ni-rich Ti-51.5 at.% Ni shape memory alloy. Thermochimica Acta. 2015;616:14–9.CrossRefGoogle Scholar
  3. 3.
    Otsuka K, Sawamura T, Shimizu K. Crystal structure and internal defects of equiatomic TiNi martensite. Phys Status Solidi (a). 1971;5(2):457–70.CrossRefGoogle Scholar
  4. 4.
    Oshida Y, Miyazaki S. Corrosion and biocompatibility of shape memory alloys. Zairyo-to-Kankyo. 1991;40(12):834–44.CrossRefGoogle Scholar
  5. 5.
    Shida Y, Sugimoto Y. Water jet erosion behaviour of Ti–Ni binary alloys. Wear. 1991;146(2):219–28.CrossRefGoogle Scholar
  6. 6.
    Li DY. Wear behavior of TiNi shape memory alloys. Scr Mater. 1996;34(2):195–200.CrossRefGoogle Scholar
  7. 7.
    Lin HC, He JL, Chen KC, Liao HM, Lin KM. Wear characteristics of TiNi shape memory alloys. Metallur Mater Trans A. 1997;28(9):1871–7.CrossRefGoogle Scholar
  8. 8.
    Hartl DJ, Lagoudas DC. Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng. 2007;221(4):535–52.CrossRefGoogle Scholar
  9. 9.
    Deberg L, Taheri Andani M, Hosseinipour M, Elahinia M. An SMA passive ankle foot orthosis: design, modeling, and experimental evaluation. Smart Mater Res. 2014. Scholar
  10. 10.
    El Feninat F, Laroche G, Fiset M, Mantovani D. Shape memory materials for biomedical applications. Adv Eng Mater. 2002;4(3):91–104.CrossRefGoogle Scholar
  11. 11.
    Chau ETF, Friend CM, Allen DM, Hora J, Webster JR. A technical and economic appraisal of shape memory alloys for aerospace applications. Mater Sci Eng, A. 2006;438–440:589–92.CrossRefGoogle Scholar
  12. 12.
    Brantley WA, Iijima M, Grentzer TH. Temperature-modulated DSC study of phase transformations in nickel–titanium orthodontic wires. Thermochim Acta. 2002;392–393:329–37.CrossRefGoogle Scholar
  13. 13.
    Florian G, Gabor AR, Nicolae CA, Iacobescu G, Stănică N, Mărăşescu P, et al. Physical properties (thermal, thermomechanical, magnetic, and adhesive) of some smart orthodontic wires. J Therm Anal Calorim. 2018;134(1):189–208.CrossRefGoogle Scholar
  14. 14.
    Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MF-X, Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010;58(9):3444–58.CrossRefGoogle Scholar
  15. 15.
    Karaca HE, Kaya I, Tobe H, Basaran B, Nagasako M, Kainuma R, et al. Shape memory behavior of high strength Ni54Ti46 alloys. Mater Sci Eng, A. 2013;580:66–70.CrossRefGoogle Scholar
  16. 16.
    Padula S, Qiu S, Gaydosh D, Noebe R, Bigelow G, Garg A, et al. Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metallur Mater Trans A. 2012;43(12):4610–21.CrossRefGoogle Scholar
  17. 17.
    Nishida M, Wayman CM, Honma T. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall Trans A. 1986;17(9):1505–15.CrossRefGoogle Scholar
  18. 18.
    Kaya I, Tobe H, Karaca HE, Basaran B, Nagasako M, Kainuma R, et al. Effects of aging on the shape memory and superelasticity behavior of ultra-high strength Ni54Ti46 alloys under compression. Mater Sci Eng, A. 2016;678:93–100.CrossRefGoogle Scholar
  19. 19.
    Motemani Y, Nili-Ahmadabadi M, Tan MJ, Bornapour M, Rayagan S. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. J Alloy Compd. 2009;469(1–2):164–8.CrossRefGoogle Scholar
  20. 20.
    Kim JI, Liu Y, Miyazaki S. Ageing-induced two-stage R-phase transformation in Ti–50.9 at.% Ni. Acta Mater. 2004;52(2):487–99.CrossRefGoogle Scholar
  21. 21.
    Dlouhy A, Khalil-Allafi J, Eggeler G. Multiple-step martensitic transformations in Ni-rich NiTi alloys—an in situ transmission electron microscopy investigation. Phil Mag. 2003;83(3):339–63.CrossRefGoogle Scholar
  22. 22.
    Antonucci V, Faiella G, Giordano M, Mennella F, Nicolais L. Electrical resistivity study and characterization during NiTi phase transformations. Thermochim Acta. 2007;462(1–2):64–9.CrossRefGoogle Scholar
  23. 23.
    Kök M, Yakinci ZD, Aydogdu A, Aydogdu Y. Thermal and magnetic properties of Ni51Mn28. 5Ga19. 5B magnetic-shape-memory alloy. J Therm Anal Calorim. 2014;115(1):555–9.CrossRefGoogle Scholar
  24. 24.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  25. 25.
    Takhor RL. Advances in nucleation and crystallization of glasses. Columbus: American Ceramics Society; 1971. p. 166.Google Scholar
  26. 26.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  27. 27.
    Salzbrenner RJ, Cohen M. On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1979;27(5):739–48.CrossRefGoogle Scholar
  28. 28.
    Tong HC, Wayman CM. Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1975;23(2):209–15.CrossRefGoogle Scholar
  29. 29.
    Dlouhý A, Bojda O, Somsen C, Eggeler G. Conventional and in situ transmission electron microscopy investigations into multistage martensitic transformations in Ni-rich NiTi shape memory alloys. Mater Sci Eng, A. 2008;481–482:409–13.CrossRefGoogle Scholar
  30. 30.
    Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ. Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater. 2004;52(11):3383–402.CrossRefGoogle Scholar
  31. 31.
    Paryab M, Nasr A, Bayat O, Abouei V, Eshraghi A. Effect of heat treatment on the microstructural and superelastic behavior of NiTi alloy with wt% Ni. Metal. 2010;16(2):123–31.Google Scholar
  32. 32.
    Acar E. The determination of the phase transformations and the activation energies in TiNi smart alloys. Gazi Univ Sci J Part C Des Technol. 2016;4(3):165–71.Google Scholar
  33. 33.
    Dağdelen F, Buytoz S, Akbaş İ. The effects on thermal and microstructure properties of Cu addition in NiTi SMAs. Fırat Univ J Eng Sci. 2017;29(1):269–75.Google Scholar
  34. 34.
    Dagdelen F, Aydogdu Y. Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. J Therm Anal Calorim. 2019;136(2):637–42.CrossRefGoogle Scholar
  35. 35.
    Natalia R, Sergey B. Entropy change in the B2 → B19′ martensitic transformation in TiNi alloy. Thermochim Acta. 2015;602:30–5.CrossRefGoogle Scholar
  36. 36.
    Wang ZG, Zu XT, Huo Y. Effect of heating/cooling rate on the transformation temperatures in TiNiCu shape memory alloys. Thermochim Acta. 2005;436(1–2):153–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Irfan Kaya
    • 1
    Email author
  • Yalçın Özdemir
    • 1
  • Eren Kaya
    • 1
  • Mehmet Emin Keskin
    • 1
  1. 1.Department of Mechanical EngineeringEskisehir Technical UniversityEskisehirTurkey

Personalised recommendations