Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 1069–1090 | Cite as

Influence of the combination of nucleating agent and plasticizer on the non-isothermal crystallization kinetics and activation energies of poly(lactic acid)

  • Li Chen
  • Qiang DouEmail author
Article
  • 99 Downloads

Abstract

The influence of the combination of the nucleating agent (talc, N, N′-ethylene bis-stearamide (EBS) and a commercial nucleating agent NT-20) and the plasticizer (poly(ethylene glycol), PEG) on the melting and crystallization behaviors of poly(lactic acid) (PLA) was investigated by means of differential scanning calorimetry (DSC). The Jeziorny’s, Ozawa’s and Mo’s models were used to describe the non-isothermal cold and melt crystallization kinetics of the modified PLA samples. The non-isothermal cold and melt crystallization activation energies were evaluated by Kissinger’s method and Friedman’s method, respectively. The results show that the non-isothermal cold and melt crystallization kinetics of the samples are successfully analyzed by Jeziorny’s and Mo’s models, whereas Ozawa’s model is only suitable for the non-isothermal melt crystallization kinetics of PLA/talc sample. It is shown that the combination of one nucleating agent and PEG results in the synergistic effect on the cold and melting crystallization rates of PLA. Moreover, the combination of dual nucleating agents and PEG improves the cold crystallization rate but hinders the melt crystallization rate. It is indicated that dual nucleating agents act as physical hindrance to the molecular chain movement of PLA which results in the increases in the cold and melt crystallization activation energies.

Keywords

Poly(lactic acid) Nucleating agent Plasticizer Non-isothermal crystallization kinetics Crystallization activation energy 

Notes

Supplementary material

10973_2019_8507_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2584 kb)

References

  1. 1.
    John RP, Gangadharan D, Nampoothiri KM. Genome shuffling of lactobacillus delbrueckii mutant and bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresour Technol. 2008;99:8008–15.PubMedGoogle Scholar
  2. 2.
    Bai Z-F, Dou Q. Non-isothermal crystallization kinetics of polypropylene/poly(lactic acid)/maleic anhydride-grafted polypropylene blends. J Therm Anal Calorim. 2016;126:785–94.Google Scholar
  3. 3.
    Hamad K, Kaseem M, Yang HW, Deri F, Ko YG. Properties and medical applications of polylactic acid: a review. Express Polym Lett. 2015;9:435–55.Google Scholar
  4. 4.
    Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101:8493–501.PubMedGoogle Scholar
  5. 5.
    Masmoudi F, Bessadok A, Dammak M, Jaziri M, Ammar E. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environ Sci Pollut Res. 2016;23:1–11.Google Scholar
  6. 6.
    Anderson KS, Schreck KM, Hillmyer MA. Toughening polylactide. Polym Rev. 2008;48:85–108.Google Scholar
  7. 7.
    Bubeck RA, Merrington A, Dumitrascu A, Smith PB. Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends. J Therm Anal Calorim. 2018;131:309–16.Google Scholar
  8. 8.
    Tábi T. The application of the synergistic effect between the crystal structure of poly(lactic acid) (PLA) and the presence of ethylene vinyl acetate copolymer (EVA) to produce highly ductile PLA/EVA blends. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08184-x.CrossRefGoogle Scholar
  9. 9.
    Dartora PC, da Rosa Loureiro M, de Camargo Forte MM. Crystallization kinetics and morphology of poly(lactic acid) with polysaccharide as nucleating agent. J Therm Anal Calorim. 2018;134:1705–13.Google Scholar
  10. 10.
    Fang H, Zhang Y, Bai J, Wang Z. Shear-induced nucleation and morphological evolution for bimodal long chain branched polylactide. Macromolecules. 2013;46:6555–65.Google Scholar
  11. 11.
    Binsbergen FL. Heterogeneous nucleation in the crystallization of polyolefins: part 1. Chemical and physical nature of nucleating agents. Polymer. 1970;11:253–67.Google Scholar
  12. 12.
    Binsbergen FL, De Lange BGM. Heterogeneous nucleation in the crystallization of polyolefins: part 2. Kinetics of crystallization of nucleated polypropylene. Polymer. 1970;11:309–32.Google Scholar
  13. 13.
    Binsbergen FL. Heterogeneous nucleation in the crystallization of polyolefins. III. Theory and mechansim. J Polym Sci Polym Phys Ed. 1973;11:117–35.Google Scholar
  14. 14.
    Yu F, Liu T, Zhao X, Yu X, Lu A, Wang J. Effects of talc on the mechanical and thermal properties of polylactide. J Appl Polym Sci. 2012;125:99–109.Google Scholar
  15. 15.
    Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci. 2007;107:2246–55.Google Scholar
  16. 16.
    Li Y, Han C, Yu Y, Xiao L, Shao Y. Effect of content and particle size of talc on nonisothermal melt crystallization behavior of poly(L-lactide). J Therm Anal Calorim. 2019;135:2049–58.Google Scholar
  17. 17.
    Jiang L, Zhang J, Wolcott MP. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer. 2007;48:7632–44.Google Scholar
  18. 18.
    Huang JW, Yung CH, Wen YL, Kang CC, Yeh MY. Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization. J Appl Polym Sci. 2009;112:3149–56.Google Scholar
  19. 19.
    Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D. PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta. 2010;511:129–39.Google Scholar
  20. 20.
    Nerantzaki M, Prokopiou L, Bikiaris DN, Patsiaoura D, Chrissafis K, Klonos P, Kyritsis A, Pissis P. In situ prepared poly(DL-lactic acid)/silica nanocomposites: study of molecular composition, thermal stability, glass transition and molecular dynamics. Thermochim Acta. 2018;669:16–29.Google Scholar
  21. 21.
    Terzopoulou Z, Klonos PA, Kyritsis A, Tziolas A, Avgeropoulos A, Papageorgiou GZ, Bikiaris DN. Interfacial interactions, crystallization and molecular mobility in nanocomposites of poly(lactic acid) filled with new hybrid inclusions based on graphene oxide and silica nanoparticles. Polymer. 2019;166:1–12.Google Scholar
  22. 22.
    Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Beslikas T, Bikiaris D. Oxidized multiwalled carbon nanotubes as effective reinforcement and thermal stability agents of poly(lactic acid) ligaments. J Appl Polym Sci. 2010;118:2712–21.Google Scholar
  23. 23.
    Huang C, Bai H, Xiu H, Zhang Q, Fu Q. Matrix crystallization induced simultaneous enhancement of electrical conductivity and mechanical performance in poly(l-lactide)/multiwalled carbon nanotubes (PLLA/MWCNTs) nanocomposites. Compos Sci Technol. 2014;102:20–7.Google Scholar
  24. 24.
    Klonos P, Terzopoulou Z, Koutsoumpis S, Zidropoulos S, Kripotou S, Papageorgiou GZ, Bikiaris DN, Kyritsis A, Pissis P. Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(L–lactic acid) and nano-inclusions of 1–3D geometry studied by thermal and dielectric techniques. Eur Polym J. 2016;82:16–34.Google Scholar
  25. 25.
    Meng Q, Heuzey M-C, Carreau PJ. Control of thermal degradation of polylactide/clay nanocomposites during melt processing by chain extension reaction. Polym Degrad Stab. 2012;97:2010–20.Google Scholar
  26. 26.
    Papageorgiou GZ, Terzopoulou Z, Bikiaris D, Triantafyllidis KS, Diamanti E Gournis D, Klonos P, Giannoulidis E, Pissis P. Evaluation of the formed interface in biodegradable poly(l-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochim Acta. 2014;597:48-57.Google Scholar
  27. 27.
    Suksut B, Deeprasertkul C. Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. J Polym Environ. 2011;19:288–96.Google Scholar
  28. 28.
    Song P, Wei Z, Liang J, Chen G, Zhang W. Crystallization behavior and nucleation analysis of poly(L-lactic acid) with a multiamide nucleating agent. Polym Eng Sci. 2012;52:1058–68.Google Scholar
  29. 29.
    Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Nucleating agent for poly(L-lactic acid)—an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci. 2007;103:198–203.Google Scholar
  30. 30.
    Li C, Dou Q, Bai Z, Lu Q. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim. 2015;122:407–17.Google Scholar
  31. 31.
    Li C, Dou Q. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): effect of dilithium hexahydrophthalate as a novel nucleating agent. Thermochim Acta. 2014;594:31–8.Google Scholar
  32. 32.
    Li C, Dou Q. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): effect of dilithium cis-4-cyclohexene-1,2-dicarboxylate as a novel and efficient nucleating agent. Polym Adv Technol. 2015;26:376–84.Google Scholar
  33. 33.
    Cai J, Liu M, Wang L, Yao K, Li S, Xiong H. Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym. 2011;86:941–7.Google Scholar
  34. 34.
    Pei A, Zhou Q, Berglund LA. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol. 2010;70:815–21.Google Scholar
  35. 35.
    Jiang L, Shen T, Xu P, Zhao X, Li X, Dong W, Ma P, Chen M. Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. e-Polymers. 2015;16:1–13.Google Scholar
  36. 36.
    Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer. 2007;48:6855–66.Google Scholar
  37. 37.
    Ali F, Chang Y-W, Kang SC, Yoon JY. Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull. 2009;62:91–8.Google Scholar
  38. 38.
    Labrecque LV, Kumar RA, Davé V, Gross RA, Mccarthy SP. Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci. 1997;66:1507–13.Google Scholar
  39. 39.
    Scatto M, Salmini E, Castiello S, Coltelli M-B, Conzatti L, Stagnaro P, Andreotti L, Bronco S. Plasticized and nanofilled poly(lactic acid)-based cast films: effect of plasticizer and organoclay on processability and final properties. J Appl Polym Sci. 2013;127:4947–56.Google Scholar
  40. 40.
    Xiao H, Lu W, Yeh J-T. Effect of plasticizer on the crystallization behavior of poly(lactic acid). J Appl Polym Sci. 2009;113:112–21.Google Scholar
  41. 41.
    Xiao H, Liu F, Jiang T, Yeh J-T. Kinetics and crystal structure of isothermal crystallization of poly(lactic acid) plasticized with triphenyl phosphate. J Appl Polym Sci. 2010;117:2980–92.Google Scholar
  42. 42.
    Ljungberg N, Wesslén B. The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci. 2002;86:1227–34.Google Scholar
  43. 43.
    Ljungberg N, Andersson T, Wesslén B. Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. J Appl Polym Sci. 2003;88:3239–47.Google Scholar
  44. 44.
    Martino VP, Jiménez A, Ruseckaite RA. Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. J Appl Polym Sci. 2009;112:2010–8.Google Scholar
  45. 45.
    Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer. 2003;44:5681–9.Google Scholar
  46. 46.
    Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer. 2005;46:10290–300.Google Scholar
  47. 47.
    Li F-J, Zhang S-D, Liang J-Z, Wang J-Z. Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym Adv Technol. 2015;26:465–75.Google Scholar
  48. 48.
    Greco A, Ferrari F, Maffezzoli A. Thermal analysis of poly(lactic acid) plasticized by cardanol derivatives. J Therm Anal Calorim. 2018;134:559–65.Google Scholar
  49. 49.
    Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M. Plasticization of poly(L-lactide) with poly(propylene glycol). Biomacromol. 2006;7:2128–35.Google Scholar
  50. 50.
    Piorkowska E, Kulinski Z, Galeski A, Masirek R. Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer. 2006;47:7178–88.Google Scholar
  51. 51.
    Courgneau C, Ducruet V, Avérous L, Grenet J, Domenek S. Nonisothermal crystallization kinetics of poly(lactide)-effect of plasticizers and nucleating agent. Polym Eng Sci. 2013;53:1085–98.Google Scholar
  52. 52.
    Li Y, Wu H, Wang Y, Liu L, Han L, Wu J, Xiang F. Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA. J Polym Sci B Polym Phys. 2010;48:520–8.Google Scholar
  53. 53.
    Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer. 1978;19:1142–4.Google Scholar
  54. 54.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.Google Scholar
  55. 55.
    Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(ary1 ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.Google Scholar
  56. 56.
    Liu T, Mo Z, Zhang H. Crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J Appl Polym Sci. 1998;67:815–21.Google Scholar
  57. 57.
    Tobin MC. Theory of phase transition kinetics with growth site impingement. I. Homogeneous nucleation. J Polym Sci Polym Phys Ed. 1974;12:399–406.Google Scholar
  58. 58.
    Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2015;119:635–42.Google Scholar
  59. 59.
    Xu T, Wang Y, Han Q, He D, Li Q, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) nucleated with a multiamide nucleating agent. J Macromol Sci Part B Phys. 2014;53:1680–94.Google Scholar
  60. 60.
    Li C, Dou Q. Nucleating agents for poly(lactic acid). China Patent ZL 201410147213.7, 2014-04-11.Google Scholar
  61. 61.
    Martin O, Avérous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42:6209–19.Google Scholar
  62. 62.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M. Crystallization and melting behavior of poly (l-lactic acid). Macromolecules. 2007;40:9463–9.Google Scholar
  63. 63.
    Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules. 2005;38:8012–21.Google Scholar
  64. 64.
    Zhang J, Tashiro K, Domb AJ, Tsuji H. Confirmation of disorder α form of poly(L-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp. 2006;242:274–8.Google Scholar
  65. 65.
    Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.Google Scholar
  66. 66.
    Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly(L-lactic acid). J Polym Sci Part B Polym Phys. 2004;42:25–32.Google Scholar
  67. 67.
    Androsch R, Schick C, Di Lorenzo ML. Melting of conformationally disordered crystals (α′-phase) of Poly(L-lactic acid). Macromol Chem Phys. 2014;215:1134–9.Google Scholar
  68. 68.
    Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM. Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab. 2012;97:2027–36.Google Scholar
  69. 69.
    Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7(12):1103–12.Google Scholar
  70. 70.
    Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.Google Scholar
  71. 71.
    Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9(2):177–84.Google Scholar
  72. 72.
    Zeng A, Zheng Y, Qiu S, Guo Y. Isothermal crystallization and melting behavior of polypropylene with lanthanum complex of cyclodextrin derivative as a β-nucleating agent. J Appl Polym Sci. 2011;121:3651–61.Google Scholar
  73. 73.
    Chen Y, Yao X, Gu Q, Pan Z. Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. J Polym Eng. 2013;33:163–71.Google Scholar
  74. 74.
    Zhou WY, Duan B, Wang M, Cheung WL. Crystallization kinetics of poly(L-Lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Appl Polym Sci. 2009;113:4100–15.Google Scholar
  75. 75.
    Zhang Y, Deng B, Liu Q, Chang G. Nonisothermal crystallization kinetics of Poly(lactic acid)/nanosilica composites. J Macromol Sci Part B Phys. 2013;52:334–43.Google Scholar
  76. 76.
    Zhao Y, Qiu Z, Yan S, Yang W. Crystallization behavior of biodegradable poly(L-lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polym Eng Sci. 2011;51:1564–73.Google Scholar
  77. 77.
    Li M, Hu D, Wang Y, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci. 2010;50:2298–305.Google Scholar
  78. 78.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.Google Scholar
  79. 79.
    Papageorgiou GZ, Achilias DS, Bikiaris DN. Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and non-isothermal conditions. Macromol Chem Phys. 2007;208:1250–64.Google Scholar
  80. 80.
    Xiao H, Yang L, Ren X, Jiang T, Yeh J-T. Kinetics and crystal structure of poly(lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent. Polym Compos. 2010;31:2057–68.Google Scholar
  81. 81.
    Wittmann JC, Lotz B. Epitaxial crystallization of polyethylene on organic substrates: a reappraisal of the mode of action of selected nucleating agents. J Polym Sci Polym Phys Ed. 1981;19:1837–51.Google Scholar
  82. 82.
    Wittmann JC, Lotz B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci. 1990;15:909–48.Google Scholar
  83. 83.
    Song P, Chen G, Wei Z, Chang Y, Zhang W, Liang J. Rapid crystallization of poly(L-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer. 2012;53:4300–9.Google Scholar
  84. 84.
    Han Q, Wang Y, Shao C, Zheng G, Li Q, Shen C. Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. J Compos Mater. 2014;48:2737–46.Google Scholar
  85. 85.
    Auliawan A, Woo EM. Crystallization kinetics and degradation of nanocomposites based on ternary blend of poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide) with two different organoclays. J Appl Polym Sci. 2012;125:444–58.Google Scholar
  86. 86.
    Zou H, Wang L, Yi C, Gan H. Thermal properties and non-isothermal crystallization behavior of poly(trimethylene terephthalate)/poly(lactic acid) blends. Polym Int. 2011;60:1349–54.Google Scholar
  87. 87.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B. 2003;107:882–8.Google Scholar
  88. 88.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 2010;6:183–95.Google Scholar
  89. 89.
    Vyazovkin S, Dranca I. Isoconversional analysis of combined melt and glass crystallization data. Macromol Chem Phys. 2006;207:20–5.Google Scholar
  90. 90.
    Vyazovkin S. Nonisothermal crystallization of polymers: getting more out of kinetic analysis of differential scanning calorimetry data. Polym Cryst. 2018;e10003.  https://doi.org/10.1002/pcr2.10003.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations