Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 885–893 | Cite as

Evaluating redox reactivity of CuO-based oxygen carriers synthesized with organometallic precursors

  • Jian SunEmail author
  • Yuandong Yang
  • Wengqiang LiuEmail author
Article

Abstract

The highly efficient CuO-based oxygen carrier is prospectively applied in chemical-looping combustion process. The metal precursors and synthetic methods greatly affect the performance of the synthetic CuO-based oxygen carriers. The inorganic precursors are commonly used to synthesize CuO-based oxygen carriers, while the organometallic precursors are scarcely adopted. In this work, the organometallic copper precursor [copper (II) acetate] and three other different organometallic support precursors (magnesium l-lactate hydrate, silicon tetraacetate and magnesium acetate) were adopted to produce CuO-based oxygen carriers via the methods of wet-mixing and spray-drying, respectively. It is found that the synthetic oxygen carriers incorporated with inert supports (MgO and SiO2) exhibit remarkably stable redox reactivity, compared to the pure CuO. Moreover, the redox reactivity of the MgO-incorporated CuO-based oxygen carriers is superior to that of the SiO2-incorporated CuO-based oxygen carriers. It is mainly attributed to the higher Tammann temperature of MgO (1549 K) compared to that of SiO2 (937 K), which more effectively contribute CuO to inhibit particle growth and agglomeration due to sintering. Additionally, the MgO-incorporated CuO-based oxygen carriers prepared via scalable spray-drying method also exhibit the relatively high redox reactivity. It indicates that the spray-dried, synthetic CuO-based oxygen carriers from organometallic precursors possess the potential to be industrialized amplification.

Keywords

CuO-based oxygen carriers Organometallic precursors Wet-mixing Spray-drying 

Notes

Acknowledgements

The project was supported by National Natural Science Foundation of China (51806109 and 51776083).

References

  1. 1.
    Psarras PC, Comello S, Bains P, Charoensawadpong P, Reichelstein S, Wilcox J. Carbon capture and utilization in the industrial sector. Environ Sci Technol. 2017;51:11440–9.PubMedGoogle Scholar
  2. 2.
    Ma X, Li Y, Duan L, Anthony E, Liu H. CO2 capture performance of calcium-based synthetic sorbent with hollow core–shell structure under calcium looping conditions. Appl Energy. 2018;225:402–12.Google Scholar
  3. 3.
    Lackner KS. A guide to CO2 sequestration. Science. 2003;300:1677.PubMedGoogle Scholar
  4. 4.
    Guo Q, Liu Y, Tian H. Recent advances on preparation and characteristics of oxygen carrier particles. Int Rev Chem Eng. 2009;1:357–68.Google Scholar
  5. 5.
    Sun J, Liu W, Hu Y, Wu J, Li M, Yang X, Wang W, Xu M. Enhanced performance of extruded–spheronized carbide slag pellets for high temperature CO2 capture. Chem Eng J. 2016;285:293–303.Google Scholar
  6. 6.
    Yang Y, Liu W, Hu Y, Sun J, Tong X, Chen Q, Li Q. One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture. Chem Eng J. 2018;353:92–9.Google Scholar
  7. 7.
    Sun J, Liang C, Tong X, Guo Y, Li W, Zhao C, Zhang J, Lu P. Evaluation of high-temperature CO2 capture performance of cellulose-templated CaO-based pellets. Fuel. 2019;239:1046–54.Google Scholar
  8. 8.
    Cho P, Mattisson T, Lyngfelt A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83:1215–25.Google Scholar
  9. 9.
    Guo Y, Zhao C, Sun J, Li W, Lu P. Facile synthesis of silica aerogel supported K2CO3 sorbents with enhanced CO2 capture capacity for ultra-dilute flue gas treatment. Fuel. 2018;215:735–43.Google Scholar
  10. 10.
    Sun J, Yang Y, Guo Y, Xu Y, Li W, Zhao C, Liu W, Lu P. Stabilized CO2 capture performance of wet mechanically activated dolomite. Fuel. 2018;222:334–42.Google Scholar
  11. 11.
    Sun J, Sun Y, Yang Y, Tong X, Liu W. Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature. Appl Energy. 2019;242:919–30.Google Scholar
  12. 12.
    Fan L, Zeng L, Wang W, Luo S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion–prospect and opportunity. Energy Environ Sci. 2012;5:7254–80.Google Scholar
  13. 13.
    Song T, Shen L. Review of reactor for chemical looping combustion of solid fuels. Int J Greenh Gas Control. 2018;76:92–110.Google Scholar
  14. 14.
    E. Ksepko, J. Klimontko, A. Kwiecinska, Industrial wastewater treatment wastes used as oxygen carriers in energy generation processes. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08214-8.Google Scholar
  15. 15.
    Siriwardane R, Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy Fuels. 2009;23:3885–92.Google Scholar
  16. 16.
    Mei D, Abad A, Zhao H, Yan S, Wang B, Yuan Q. Extension and evaluation of a macroscopic model for syngas-fueled chemical looping combustion. Chem Eng Process. 2018;133:106–16.Google Scholar
  17. 17.
    Wang B, Li J, Ding N, Mei D, Zhao H, Zheng C. Chemical looping combustion of a typical lignite with a CaSO4–CuO mixed oxygen carrier. Energy Fuels. 2017;31:13942–54.Google Scholar
  18. 18.
    Hossain MM, Lopez D, Herrera J, de Lasa HI. Nickel on lanthanum-modified γ-Al2O3 oxygen carrier for CLC: reactivity and stability. Catal Today. 2009;143:179–86.Google Scholar
  19. 19.
    Cho P, Mattisson T, Lyngfelt A. Defluidization conditions for a fluidized bed of iron oxide-, nickel oxide-, and manganese oxide-containing oxygen carriers for chemical-looping combustion. Ind Eng Chem Res. 2006;45:968–77.Google Scholar
  20. 20.
    Abad A, García-Labiano F, de Diego LF, Gayán P, Adánez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy Fuels. 2007;21:1843–53.Google Scholar
  21. 21.
    T. Mattisson, A. Järdnäs, A. Lyngfelt, Reactivity of some metal oxides supported on alumina with alternating methane and oxygen application for chemical-looping combustion., Energ Fuel. 2003;17:643-51.Google Scholar
  22. 22.
    Hoteit A, Chandel MK, Delebarre A. Nickel- and copper-based oxygen carriers for chemical looping combustion. Chem Eng Technol. 2009;32:443–9.Google Scholar
  23. 23.
    Wang B, Li H, Ding N, Shen Q, Zhao H, Zheng C. Chemical looping combustion characteristics of coal with Fe2O3 oxygen carrier. J Therm Anal Calorim. 2018;132:17–27.Google Scholar
  24. 24.
    Cui Y, Cao Y, Pan W. Preparation of copper-based oxygen carrier supported by titanium dioxide. J Therm Anal Calorim. 2013;114:1089–97.Google Scholar
  25. 25.
    Garcia-Labiano F, De Diego L, Adanez J, Abad A, Gayan P. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion. Ind Eng Chem Res. 2004;43:8168–77.Google Scholar
  26. 26.
    Imtiaz Q, Kierzkowska AM, Broda M, Müller CR. Synthesis of Cu-rich, Al2O3-stabilized oxygen carriers using a coprecipitation technique: redox and carbon formation characteristics. Environ Sci Technol. 2012;46:3561–6.PubMedGoogle Scholar
  27. 27.
    Adánez J, Gayán P, Celaya J, de Diego LF, García-Labiano F, Abad A. Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Ind Eng Chem Res. 2006;45:6075–80.Google Scholar
  28. 28.
    Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combust Flame. 2010;157:602–15.Google Scholar
  29. 29.
    Forero C, Gayán P, García-Labiano F, De Diego L, Abad A, Adánez J. High temperature behaviour of a CuO/γAl2O3 oxygen carrier for chemical-looping combustion. Int J Greenh Gas Control. 2011;5:659–67.Google Scholar
  30. 30.
    de Diego LF, Gayán P, García-Labiano F, Celaya J, Abad A, Adánez J. Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: avoiding fluidized bed agglomeration. Energy Fuels. 2005;19:1850–6.Google Scholar
  31. 31.
    Corbella B, De Diego L, García-Labiano F, Adánez J, Palacios J. Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy Fuels. 2006;20:148–54.Google Scholar
  32. 32.
    Zafar Q, Mattisson T, Gevert B. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Ind Eng Chem Res. 2005;44:3485–96.Google Scholar
  33. 33.
    Zafar Q, Mattisson T, Gevert B. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energy Fuels. 2006;20:34–44.Google Scholar
  34. 34.
    de Diego LF, García-Labiano F, Adánez J, Gayán P, Abad A, Corbella BM, María Palacios J. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83:1749–57.Google Scholar
  35. 35.
    Lambert A, Briault P, Comte E. Spinel mixed oxides as oxygen carriers for chemical looping combustion. Energy Procedia. 2011;4:318–23.Google Scholar
  36. 36.
    Chuang S, Dennis J, Hayhurst A, Scott S. Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combust Flame. 2008;154:109–21.Google Scholar
  37. 37.
    Mattisson T, Lyngfelt A, Leion H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenh Gas Control. 2009;3:11–9.Google Scholar
  38. 38.
    Arjmand M, Keller M, Leion H, Mattisson T, Lyngfelt A. Oxygen release and oxidation rates of MgAl2O4-supported CuO oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU). Energy Fuels. 2012;26:6528–39.Google Scholar
  39. 39.
    Arjmand M, Azad A-M, Leion H, Lyngfelt A, Mattisson T. Prospects of Al2O3 and MgAl2O4-supported CuO oxygen carriers in chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). Energy Fuels. 2011;25:5493–502.Google Scholar
  40. 40.
    Qin C, Liu W, An H, Yin J, Feng B. Fabrication of CaO-based sorbents for CO2 capture by a mixing method. Environ Sci Technol. 2012;46:1932–9.PubMedGoogle Scholar
  41. 41.
    Liu W, Feng B, Wu Y, Wang G, Barry J, Diniz da Costa JC. Synthesis of sintering-resistant sorbents for CO2 capture. Environ Sci Technol. 2010;44:3093–7.PubMedGoogle Scholar
  42. 42.
    Liu W, Low NW, Feng B, Wang G, Diniz da Costa JC. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture. Environ Sci Technol. 2009;44:841–7.Google Scholar
  43. 43.
    Guo Y, Tan C, Sun J, Li W, Zhao C, Zhang J, Lu P. Nano-structured MgO sorbents derived from organometallic magnesium precursors for post-combustion CO2 capture. Energy Fuels. 2018;32:6910–7.Google Scholar
  44. 44.
    Qin C, Yin J, Liu W, An H, Feng B. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process. Ind Eng Chem Res. 2012;51:12274–81.Google Scholar
  45. 45.
    Ishida M, Jin H. A novel chemical-looping combustor without NOx formation. Ind Eng Chem Res. 1996;35:2469–72.Google Scholar
  46. 46.
    Hosseini D, Imtiaz Q, Abdala P, Yoon S, Kierzkowska A, Weidenkaff A, Müller C. CuO promoted Mn2O3-based materials for solid fuel combustion with inherent CO2 capture. J Mater Chem A. 2015;3:10545–50.Google Scholar
  47. 47.
    Tian S, Jiang J, Yan F, Li K, Chen X. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. Environ Sci Technol. 2015;49:7464–72.PubMedGoogle Scholar
  48. 48.
    Zhao H, Liu L, Xu D, Zheng C, Liu G, Jiang L. NiO/NiAl2O4 oxygen carriers prepared by sol–gel for chemical-looping combustion fueled by gas. J Fuel Chem Technol. 2008;36:261–6.Google Scholar
  49. 49.
    Aihara M, Nagai T, Matsushita J, Negishi Y, Ohya H. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction. Appl Energy. 2001;69:225–38.Google Scholar
  50. 50.
    Liu W, Yin J, Qin C, Feng B, Xu M. Synthesis of CaO-based sorbents for CO2 capture by a spray-drying technique. Environ Sci Technol. 2012;46:11267–72.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical EngineeringNanjing Normal UniversityNanjingPeople’s Republic of China
  2. 2.State Key Laboratory of Coal CombustionHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations