Advertisement

Calorimetric and volumetric functions of AsxSe1−x (x = 0.3–0.5) glasses and their model representation

  • 38 Accesses

Abstract

Standard thermodynamic functions (enthalpy, entropy, and Gibbs energy) and the heat capacity of the glass-forming AsxSe1−x system with their approximation to the low-temperature region are determined. The results were obtained using the combined technique, including dynamic calorimetry in the variant temperature-modulated differential scanning calorimetry and the unified model of the calorimetric and volumetric properties of glass and melt. The thermodynamic functions for unstudied AsxSe1−x glasses with intermediate composition were predicted on the basis of the parametric similarity of properties determined by the model. The temperature dependences of the density and the coefficient of thermal expansion are determined. Using the method of quantum chemistry, the geometry of As2Se3 glass net was found and its Raman scattering spectrum was calculated. The thermodynamic functions of the AsxSe1−x glass-forming system, which is the basis for the formation of novel promising glasses with functional additives, are necessary to determine the conditions for their synthesis based on the method of minimizing the Gibbs energy.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Shiryaev VS, Churbanov MF. Preparation of high-purity chalcogenide glasses, Chapter 1. In: Adam J-L, Zhang X, editors. Chalcogenide glasses: preparation, properties and applications, Woodhead Publishing Series in electronic and optical materials, vol 44. Cambridge: Oxford; 2014. p. 3–35. https://doi.org/10.1533/9780857093561.1.3.

  2. 2.

    Felts A. Amorphous and glassy inorganic solids, M.: Mir, 1986. 546 (in Russian).

  3. 3.

    Kokorina VF. Glasses for infrared optics. Boca Raton: CRC Press; 1996. p. 236.

  4. 4.

    Borisova ZU. Glassy semiconductors. New York: Plenum; 1981. https://doi.org/10.1007/978-1-4757-0851-6.

  5. 5.

    Sanghera JS, Aggarwal ID. Active and passive chalcogenide glass optical fibers for IR applications: a review. J Non-Cryst Solids. 1999;256–257:6–16. https://doi.org/10.1016/S0022-3093(99)00484-6.

  6. 6.

    Ta’eed VG, Baker NJ, Fu L, Finsterbusch K, Lamont MRE, Moss DJ, Nguyen HC, Eggleton BJ, Choi DY, Madden S, Luther-Davies B. Opt. Express. 2007;15:9205–21. https://doi.org/10.1364/OE.15.009205.

  7. 7.

    Robichaud L-R, Fortin V, Gauthier J-C, Châtigny S, Couillard J-F, Delarosbil J-L, Vallée R, Bernier M. Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber. Opt Lett. 2016;41:4605–8. https://doi.org/10.1364/OL.41.004605.

  8. 8.

    Lucas P, Riley MR, Boussard-Pledel C, Bureau B. Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal Biochem. 2006;351:1–10. https://doi.org/10.1016/j.ab.2005.10.045.

  9. 9.

    Zakery A, Elliott SR. Optical nonlinearities in chalcogenide glasses and their application, vol. 135. Berlin: Springer; 2007. p. 202. https://doi.org/10.1007/978-3-540-71068-4.

  10. 10.

    Shiryaev VS, Churbanov MF. Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics. J Non Cryst Solids. 2017;475:1–9. https://doi.org/10.1016/j.jnoncrysol.2017.09.021.

  11. 11.

    Athanasiou GS, Ernst J, Furniss D, Benson TM, Chauhan J, Middleton J, Parmenter C, Fay M, Neate N, Shiryaev VS, Churbanov MF, Seddon AB. Towards mid-infrared, sub-diffraction, spectral-mapping of human cells and tissue: SNIM (scanning near-field infrared microscopy) tip fabrication. J Lightwave Technol. 2016;34:1212–9.

  12. 12.

    Shiryaev VS, Churbanov MF, Snopatin GE, Chenard F. Preparation of low-loss core-clad As–Se glass fibers. Opt Mater. 2015;48:222–5. https://doi.org/10.1016/j.optmat.2015.08.004.

  13. 13.

    Devyatykh GG, Churbanov MF, Scripachev IV, Dianov EM, Plotnichenko VG. Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibres. Int J Optoelectron. 1992;7:237–54.

  14. 14.

    Alharbi SR, Aly KA, Dahshan A, Saddeek YB. Crystallization kinetics of binary arsenic selenium chalcogenides. J Therm Anal Calorim. 2019;135:2069. https://doi.org/10.1007/s10973-018-7336-2.

  15. 15.

    Mohamed M, Abd-el Salam MN, Abdel Abdel-Rahim MA, Latief AY, Shaaban ER. Effect of Ag addition on crystallization kinetics and thermal stability of As–Se chalcogenide glasses. J Therm Anal Calorim. 2018;132:91. https://doi.org/10.1007/s10973-017-6873-4.

  16. 16.

    Górecki C, Górecki T. The kinetics of phase transitions in vitreous chalcogenide semiconductors As10.2Se89.8 and As9Se90Bi in early stage of physical ageing process. J Therm Anal Calorim. 2013;114:725. https://doi.org/10.1007/s10973-013-2978-6.

  17. 17.

    Shiryaev VS, Adam J-L, Zhang XH, Churbanov MF. Study of characteristic temperatures and non-isothermal crystallization kinetics in As–Se–Te glass system. Solid State Sci. 2005;7(2):209–15. https://doi.org/10.1016/j.solidstatesciences.2004.10.027.

  18. 18.

    Snopatin GE, Shiryaev VS, Plotnichenko GE, Dianov EM, Churbanov MF. High-purity chalcogenide glasses for fiber optics. Inorg Mater. 2009;45(13):1439–60. https://doi.org/10.1134/S0020168509130019.

  19. 19.

    Shiryaev VS, Smetanin SV, Ovchinnikov DK, Churbanov MF, Kryukova EB, Plotnichenko VG. Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass. Inorg Mater. 2005;41:308–14. https://doi.org/10.1007/s10789-005-0129-6.

  20. 20.

    Popescu MA. Non-crystalline chalcogenides. Dordrecht: Kluwer; 2000. p. 378.

  21. 21.

    Zhdanov VM, Maltsev AK. Low-temperature heat capacity, enthalpy and entropy of the system As2Se3 (crystal), As2Se3 (gl.), As2Te3 (crystal). J Fizicheskoj himii. 1968;42(8):2051–4 (in Russian).

  22. 22.

    Musgraves JD., Danto S., Richardson K. Thermal properties of chalcogenide glasses/chalcogenide glasses. Woodhead Publishing Limited; 2014. pp. 82–112. https://doi.org/10.1533/9780857093561.1.82.

  23. 23.

    Wagner T, Kasap SO. Glass transformation, heat capacity and structure of ASxSe1−x glasses studied by modulated temperature differential scanning calorimetry experiments. Philos Mag B. 1996;74:667. https://doi.org/10.1080/01418639608241069.

  24. 24.

    Easteal AJ, Wilder JA, Mohr RK, Moynihan CT. Heat capacity and structural relaxation of enthalpy in AsSe glass. J Am Ceram Soc. 1977;60(3–4):134–8. https://doi.org/10.1111/j.1151-2916.1977.tb15488.x.

  25. 25.

    Thornburg DD, Johnson R. Thermal analysis of bulk amorphous arsenic triselenide. J Non Cryst Solids. 1975;17(1):2–8. https://doi.org/10.1016/0022-3093(75)90108-8.

  26. 26.

    Zigel VV, Orlova GM, D’yakova GN. High-temperature heat capacity of chalcogenide compounds in glassy and crystalline states. Fiz Khim Stekla. 1975;1(6):558–61 (in Russian).

  27. 27.

    Simon SL. Temperature-modulated differential scanning calorimetry: theory and application. Thermochim Acta. 2001;374:55–71. https://doi.org/10.1016/S0040-6031(01)00493-2.

  28. 28.

    Rao KJ, Mohan R. Glass transitions in arsenic–selenium glasses. J Phys Chem. 1980;84(15):1917–9. https://doi.org/10.1021/j100452a010.

  29. 29.

    Kut’in AM, Plekhovich AD, Balueva KV, Dorofeev VV. Effects of Er2O3 content on heat capacity, thermodynamic functions and vitrification characteristics of Er3+-doped tellurite glass. J Non Cryst Solids. 2018;480:95–9. https://doi.org/10.1016/j.jnoncrysol.2017.06.020.

  30. 30.

    Kut’in AM, Pyadushkin DV, Bykova EA, Tsvetkova LYA. Analytic presentation of thermodynamic functions of the condensed states of substances. Zh Fiz Khimii. 1999;73(9):1692–4 (in Russian).

  31. 31.

    Voronova AE, Ananichev VA, Blinov LN. On thermal expansion of melts and glasses of the system As–Se. Fiz Khim Stekla. 2001;27(3):400–8 (in Russian).

  32. 32.

    Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O. Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1−x system. Phys Rev B. 2010;82:195206. https://doi.org/10.1103/PhysRevB.82.195206.

  33. 33.

    Lonergan J, Smith C, McClane D, Richardson K. Thermophysical properties and conduction mechanisms in AsxSe1−x chalcogenide glasses ranging from x = 0.2 to 0.5. J Appl Phys. 2016;120:145101. https://doi.org/10.1063/1.4962446.

  34. 34.

    Mohan R, Panchapagesan TS, Rao KJ. Densities, microhardnesses, and electron microscopic studies of As–Se glasses. Bull Mater Sci. 1981;3(1):29–36. https://doi.org/10.1007/BF02748833.

  35. 35.

    Musgraves JD, Wachtel P, Novak S, Wilkinson J, Richardson K. Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system. J Appl Phys. 2011;110:063503. https://doi.org/10.1063/1.3638122.

  36. 36.

    Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, Revision D.01. Wallingford: Gaussian Inc.; 2004.

  37. 37.

    Becke AD. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functional. J Chem Phys. 1997;107:8554. https://doi.org/10.1063/1.475007.

  38. 38.

    Dunning TH Jr, Hay PJ. Gaussian basis sets for molecular calculations. In: Schaefer III HF, editor. Modern theoretical chemistry, vol. 3. New York: Plenum; 1976. p. 1–27.

  39. 39.

    Assefa MK, Devera JL, Brathwaite AD, Mosley JD, Duncan MA. Vibrational scaling factors for transition metal carbonyls. Chem Phys Lett. 2015;640:175–9.

  40. 40.

    Dennington R, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R. GaussView, Version 3.09. Shawnee Mission: Semichem, Inc.; 2003.

  41. 41.

    Shiryaev VS, Churbanov MF, Snopatin GE, Plotnichenko VG, Karaksina EV, Kotereva TV, Koltashev VV, Plekhovich AD. Preparation of core-clad arsenic rich As–Se glass fiber. J Non Cryst Solids. 2016;448:11–5. https://doi.org/10.1016/j.jnoncrysol.2016.06.033.

  42. 42.

    Bues W, Somer M, Brockner W, Naturforsch Z. Schwingungsspektren der käfigstrukturierten Verbindungen P4S3, P4Se3, As4S3 und As4Se3. Zeitschrift für Naturforschung B. 1980;35(9):1063–9. https://doi.org/10.1515/znb-1980-0902.

  43. 43.

    Blachnik R, Wickel U. Thermal behaviour of A4B3 cage molecules (A = P, As; B = S, Se). Thermochim Acta. 1984;81:185–96. https://doi.org/10.1016/0040-6031(84)85123-0.

  44. 44.

    Ahn E, Williams GA, Taylor PC. Nuclear quadrupole resonance study of local bonding in glassy AsxSe1−x. Phys Rev B. 2006;74:174206. https://doi.org/10.1103/PhysRevB.74.174206.

  45. 45.

    Iovu MS, Kamitsos EI, Varsamis CPE, Boolchand P, Popescu M. Raman spectra of AsxSe100−x and As40Se60 glasses doped with metals. Chalcogen Lett. 2005;2(3):21–5.

  46. 46.

    Delaizir G, Dussauze M, Nazabal V, Lecante P, Dollé M, Rozier P, Kamitsos EI, Jovari P, Bureau B. Structural characterizations of As–Se–Te glasses. J Alloys Compd. 2011;509:831–6. https://doi.org/10.1016/j.jallcom.2010.09.104.

  47. 47.

    Golovchak R, Oelgoetz J, Vlcek M, Esposito A, Saiter A, Saiter J-M, Jain H. Complex structural rearrangements in As–Se glasses. J Chem Phys. 2014;140:054505. https://doi.org/10.1063/1.4863561.

  48. 48.

    Golovchak R, Shpotyuk O, Kozdras A, Riley B, Sundaram S, McCloy J, et al. Radiation effects in physical aging of binary As–S and As–Se glasses. J Therm Anal Calorim. 2011;103:213. https://doi.org/10.1007/s10973-010-0876-8.

  49. 49.

    Kut’in AM, Pyadushkin DV, Bykova EA. Phenomenological description of spectrum of collective oscillations of atoms in solid body. Zh Fiz Khimii. 1998;72(11):1955–9 (in Russian).

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation.

Author information

Correspondence to A. D. Plekhovich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kut’in, A.M., Shiryaev, V.S., Plekhovich, A.D. et al. Calorimetric and volumetric functions of AsxSe1−x (x = 0.3–0.5) glasses and their model representation. J Therm Anal Calorim 139, 1443–1452 (2020) doi:10.1007/s10973-019-08491-3

Download citation

Keywords

  • Arsenic selenide glasses
  • Thermodynamic properties
  • Temperature-modulated DSC
  • Raman scattering