Skip to main content
Log in

The influence of compression pressure on thermal expansion, bulk density, and Young’s modulus of electroporcelain mixture up to 1100 °C

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The production technology has a significant impact on physical and mechanical properties of ceramic materials. The common manufacturing processes are pressing, extrusion, or casting. Porcelain products are often formed by pressing, which increases their mechanical properties. Therefore, samples made from electroporcelain mixture for production of high-voltage insulators are studied using pressing with five different compression pressures from 70 MPa up to 110 MPa. Young’s modulus, thermal expansion, and bulk density are investigated during firing in temperature interval from 25 to 1100 °C. All measurements are carried out in the same temperature program with a heating rate of 5 °C min−1 in static air atmosphere. The influence of pressing and heating on Young’s modulus, thermal expansion, and bulk density of electroporcelain mixture is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bergaya F, Theng BKG, Lagaly G. Handbook of clay science. Amsterdam: Elsevier; 2006.

    Google Scholar 

  2. Murray HH. Applied clay mineralogy today and tomorrow. Clay Miner. 1999;34:39–49.

    Article  CAS  Google Scholar 

  3. Carretero MI, Dondi M, Fabbri B, Raimondo M. The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays. Appl Clay Sci. 2002;20:301–6.

    Article  CAS  Google Scholar 

  4. Rice RW. Ceramic fabrication technology. Boca Raton: CRC Press; 2002.

    Book  Google Scholar 

  5. Ferrari S, Gualtieri A. The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci. 2006;32:73–81.

    Article  CAS  Google Scholar 

  6. Bennour A, Mahmoudi S, Srasra E, Hatira N, Boussen S, Ouaja M, Zargouni F. Identification and traditional ceramic application of clays from the Chouamekh region in south-eastern Tunisia. Appl Clay Sci. 2015;118:212–20.

    Article  CAS  Google Scholar 

  7. EN 60672-3 (1997) Ceramic and glass-insulating materials part 3: specifications for individual materials.

  8. Štubňa I, Húlan T, Trník A, Vozár L. Uncertainty in the determination of Young‘s modulus of ceramics using the impulse excitation technique at elevated temperatures. Acta Acust United Acust. 2018;104:269–76.

    Article  Google Scholar 

  9. Štubňa I, Trník A, Harcek M, Vrabec M, Matfiak J. The dependance of Young’s modulus of green electroceramic body on moisture and compression pressure. Silika. 2004;14:172–4 (in Slovak).

    Google Scholar 

  10. Štubňa I, Trník A, Harcek M, Vrabec M, Matfiak J. The dependance of mechanical strength of green electroceramic body on moisture and compression pressure. Silika. 2005;15:16–7 (in Slovak).

    Google Scholar 

  11. Húlan T, Trník A, Štubňa I, Bačík P, Kaljuvee T, Vozár L. Development of Young’s modulus of illitic clay during heating up to 1100 °C. Mater Sci Medzg. 2015;21:429–34.

    Google Scholar 

  12. Knapek M, Húlan T, Minárik P, Dobroň P, Štubňa I, Stráská J, Chmelík F. Study of microcracking in illite-based ceramics during firing. J Eur Ceram Soc. 2016;36:221–6.

    Article  CAS  Google Scholar 

  13. Al-Shantir O, Trník A. Influence of compression pressure on Young’s modulus of ceramic samples. AIP Conf Proc. 2017;1866:040001.

    Article  Google Scholar 

  14. Al-Shantir O, Trník A, Csáki Š. Influence of firing temperature and compacting pressure on density and Young’s modulus of electroporcelain. AIP Conf Proc. 2018;1988:020001.

    Article  Google Scholar 

  15. Podoba R, Trník A, Podobník Ľ. Upgrading of TGA/DTA analyzer derivatograph. Építőanyag. 2012;64:28–9.

    Google Scholar 

  16. Jankula M, Šín P, Podoba R, Ondruška J. Typical problems in push-rod dilatometry analysis. Építôanyag. 2013;65:11–4.

    Google Scholar 

  17. ASTM C1259-15. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration. West Conshohocken: ASTM International; 2015.

    Google Scholar 

  18. Štubňa I, Šín P, Trník A, Veinthal R. Mechanical properties of kaolin during heating. Key Eng Mater. 2013;527:14–9.

    Article  Google Scholar 

  19. Ptáček P, Kubátová D, Havlica J, Brandštetr J, Šoukal F, Opravil T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010;204:222–7.

    Article  Google Scholar 

  20. Ondro T, Húlan T, Vitázek I. Non-isothermal kinetic analysis of the dehydroxylation of kaolinite in dynamic air atmosphere. Acta Technol Agric. 2017;20:52–6.

    Google Scholar 

  21. Obada DO, Dodoo-Arhin D, Dauda M, Anafi FO, Ahmed AS, Ajayi OA. The impact of kaolin dehydroxylation on the porosity and mechanical integrity of kaolin based ceramics using different pore formers. Results Phys. 2017;7:2718–27.

    Article  Google Scholar 

  22. Húlan T, Trník A, Medveď I. Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J Therm Anal Calorim. 2017;127:291–8.

    Article  Google Scholar 

  23. Ptáček P, Šoukal F, Opravil T, Nosková M, Havlica J, Brandštetr J. The kinetics of Al-Si spinel phase crystallization from calcined kaolin. J Solid State Chem. 2010;183:2565–9.

    Article  Google Scholar 

  24. Heimann RB. Classic and advanced ceramics: from fundamentals to applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010.

    Book  Google Scholar 

  25. Trník A, Moravčíková J, Keppert M, Medveď I. Isothermal thermodilatometric study of sintering in electroceramics. Sci Sinter. 2013;45:3–12.

    Article  Google Scholar 

  26. Húlan T, Trník A, Medveď I. Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J Therm Anal Calorim. 2017;127:1–8.

    Article  Google Scholar 

  27. Venturelli C, Paganelli M. Sintering behaviour of clays for the production of ceramics. Process Eng. 2007;84:5–8.

    Google Scholar 

  28. Ptáček P, Křečková M, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetics and mechanism of kaolin powder sintering I. The dilatometric CRH study of sinter-crystallization of mullite and cristobalite. Powder Technol. 2012;232:24–30.

    Article  Google Scholar 

  29. Emmerich W-D, Hayhurst J, Kaisersberger E. High temperature dilatometer study of special ceramics and their sintering kinetics. Thermochim Acta. 1986;106:71–8.

    Article  CAS  Google Scholar 

  30. Kováč J, Trník A, Medveď I, Vozár L. Influence of calcite in a ceramic body on its thermophysical properties. J Therm Anal Calorim. 2013;114:963–70.

    Article  Google Scholar 

  31. Trník A, Štubňa I, Sokolář R, Medveď I. Use of fly ash in ceramic tiles: elastic properties during firing. J Ceram Soc Jpn. 2013;121:925–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants UGA VII/1/2019 from Constantine the Philosopher University in Nitra and by RVO: 11000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Trník.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shantir, O., Csáki, Š., Veverka, J. et al. The influence of compression pressure on thermal expansion, bulk density, and Young’s modulus of electroporcelain mixture up to 1100 °C. J Therm Anal Calorim 138, 2035–2042 (2019). https://doi.org/10.1007/s10973-019-08490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08490-4

Keywords

Navigation