Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 2035–2042 | Cite as

The influence of compression pressure on thermal expansion, bulk density, and Young’s modulus of electroporcelain mixture up to 1100 °C

  • Omar Al-Shantir
  • Štefan Csáki
  • Jakub Veverka
  • Anton TrníkEmail author
Article

Abstract

The production technology has a significant impact on physical and mechanical properties of ceramic materials. The common manufacturing processes are pressing, extrusion, or casting. Porcelain products are often formed by pressing, which increases their mechanical properties. Therefore, samples made from electroporcelain mixture for production of high-voltage insulators are studied using pressing with five different compression pressures from 70 MPa up to 110 MPa. Young’s modulus, thermal expansion, and bulk density are investigated during firing in temperature interval from 25 to 1100 °C. All measurements are carried out in the same temperature program with a heating rate of 5 °C min−1 in static air atmosphere. The influence of pressing and heating on Young’s modulus, thermal expansion, and bulk density of electroporcelain mixture is examined.

Keywords

Electroporcelain Thermal expansion Bulk density Young’s modulus Compression pressure 

Notes

Acknowledgements

This work was supported by the Grants UGA VII/1/2019 from Constantine the Philosopher University in Nitra and by RVO: 11000.

References

  1. 1.
    Bergaya F, Theng BKG, Lagaly G. Handbook of clay science. Amsterdam: Elsevier; 2006.Google Scholar
  2. 2.
    Murray HH. Applied clay mineralogy today and tomorrow. Clay Miner. 1999;34:39–49.CrossRefGoogle Scholar
  3. 3.
    Carretero MI, Dondi M, Fabbri B, Raimondo M. The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays. Appl Clay Sci. 2002;20:301–6.CrossRefGoogle Scholar
  4. 4.
    Rice RW. Ceramic fabrication technology. Boca Raton: CRC Press; 2002.CrossRefGoogle Scholar
  5. 5.
    Ferrari S, Gualtieri A. The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci. 2006;32:73–81.CrossRefGoogle Scholar
  6. 6.
    Bennour A, Mahmoudi S, Srasra E, Hatira N, Boussen S, Ouaja M, Zargouni F. Identification and traditional ceramic application of clays from the Chouamekh region in south-eastern Tunisia. Appl Clay Sci. 2015;118:212–20.CrossRefGoogle Scholar
  7. 7.
    EN 60672-3 (1997) Ceramic and glass-insulating materials part 3: specifications for individual materials.Google Scholar
  8. 8.
    Štubňa I, Húlan T, Trník A, Vozár L. Uncertainty in the determination of Young‘s modulus of ceramics using the impulse excitation technique at elevated temperatures. Acta Acust United Acust. 2018;104:269–76.CrossRefGoogle Scholar
  9. 9.
    Štubňa I, Trník A, Harcek M, Vrabec M, Matfiak J. The dependance of Young’s modulus of green electroceramic body on moisture and compression pressure. Silika. 2004;14:172–4 (in Slovak).Google Scholar
  10. 10.
    Štubňa I, Trník A, Harcek M, Vrabec M, Matfiak J. The dependance of mechanical strength of green electroceramic body on moisture and compression pressure. Silika. 2005;15:16–7 (in Slovak).Google Scholar
  11. 11.
    Húlan T, Trník A, Štubňa I, Bačík P, Kaljuvee T, Vozár L. Development of Young’s modulus of illitic clay during heating up to 1100 °C. Mater Sci Medzg. 2015;21:429–34.Google Scholar
  12. 12.
    Knapek M, Húlan T, Minárik P, Dobroň P, Štubňa I, Stráská J, Chmelík F. Study of microcracking in illite-based ceramics during firing. J Eur Ceram Soc. 2016;36:221–6.CrossRefGoogle Scholar
  13. 13.
    Al-Shantir O, Trník A. Influence of compression pressure on Young’s modulus of ceramic samples. AIP Conf Proc. 2017;1866:040001.CrossRefGoogle Scholar
  14. 14.
    Al-Shantir O, Trník A, Csáki Š. Influence of firing temperature and compacting pressure on density and Young’s modulus of electroporcelain. AIP Conf Proc. 2018;1988:020001.CrossRefGoogle Scholar
  15. 15.
    Podoba R, Trník A, Podobník Ľ. Upgrading of TGA/DTA analyzer derivatograph. Építőanyag. 2012;64:28–9.Google Scholar
  16. 16.
    Jankula M, Šín P, Podoba R, Ondruška J. Typical problems in push-rod dilatometry analysis. Építôanyag. 2013;65:11–4.Google Scholar
  17. 17.
    ASTM C1259-15. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration. West Conshohocken: ASTM International; 2015.Google Scholar
  18. 18.
    Štubňa I, Šín P, Trník A, Veinthal R. Mechanical properties of kaolin during heating. Key Eng Mater. 2013;527:14–9.CrossRefGoogle Scholar
  19. 19.
    Ptáček P, Kubátová D, Havlica J, Brandštetr J, Šoukal F, Opravil T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010;204:222–7.CrossRefGoogle Scholar
  20. 20.
    Ondro T, Húlan T, Vitázek I. Non-isothermal kinetic analysis of the dehydroxylation of kaolinite in dynamic air atmosphere. Acta Technol Agric. 2017;20:52–6.Google Scholar
  21. 21.
    Obada DO, Dodoo-Arhin D, Dauda M, Anafi FO, Ahmed AS, Ajayi OA. The impact of kaolin dehydroxylation on the porosity and mechanical integrity of kaolin based ceramics using different pore formers. Results Phys. 2017;7:2718–27.CrossRefGoogle Scholar
  22. 22.
    Húlan T, Trník A, Medveď I. Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J Therm Anal Calorim. 2017;127:291–8.CrossRefGoogle Scholar
  23. 23.
    Ptáček P, Šoukal F, Opravil T, Nosková M, Havlica J, Brandštetr J. The kinetics of Al-Si spinel phase crystallization from calcined kaolin. J Solid State Chem. 2010;183:2565–9.CrossRefGoogle Scholar
  24. 24.
    Heimann RB. Classic and advanced ceramics: from fundamentals to applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010.CrossRefGoogle Scholar
  25. 25.
    Trník A, Moravčíková J, Keppert M, Medveď I. Isothermal thermodilatometric study of sintering in electroceramics. Sci Sinter. 2013;45:3–12.CrossRefGoogle Scholar
  26. 26.
    Húlan T, Trník A, Medveď I. Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J Therm Anal Calorim. 2017;127:1–8.CrossRefGoogle Scholar
  27. 27.
    Venturelli C, Paganelli M. Sintering behaviour of clays for the production of ceramics. Process Eng. 2007;84:5–8.Google Scholar
  28. 28.
    Ptáček P, Křečková M, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetics and mechanism of kaolin powder sintering I. The dilatometric CRH study of sinter-crystallization of mullite and cristobalite. Powder Technol. 2012;232:24–30.CrossRefGoogle Scholar
  29. 29.
    Emmerich W-D, Hayhurst J, Kaisersberger E. High temperature dilatometer study of special ceramics and their sintering kinetics. Thermochim Acta. 1986;106:71–8.CrossRefGoogle Scholar
  30. 30.
    Kováč J, Trník A, Medveď I, Vozár L. Influence of calcite in a ceramic body on its thermophysical properties. J Therm Anal Calorim. 2013;114:963–70.CrossRefGoogle Scholar
  31. 31.
    Trník A, Štubňa I, Sokolář R, Medveď I. Use of fly ash in ceramic tiles: elastic properties during firing. J Ceram Soc Jpn. 2013;121:925–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Natural SciencesConstantine the Philosopher University in NitraNitraSlovakia
  2. 2.Department of Physics of Materials, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  3. 3.Institute of Plasma PhysicsCzech Academy of SciencesPragueCzech Republic
  4. 4.Department of Materials Engineering and Chemistry, Faculty of Civil EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations