Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 1301–1307 | Cite as

Excess enthalpies and heat of esterification reaction in ethanol + acetic acid + ethyl acetate + water system at 313.15 K

  • Alexandra Golikova
  • Nikita TsvetovEmail author
  • Artemiy Samarov
  • Maria Toikka
  • Irina Zvereva
  • Maya Trofimova
  • Alexander Toikka
Article
  • 67 Downloads

Abstract

The excess enthalpies for ethanol + acetic acid + ethyl acetate + water system in the chemically equilibrium states are determined with the C80 calorimeter (Setaram) equipped with membrane mixing cells at 313.15 K and atmospheric pressure. The quaternary system exhibited positive values of the excess enthalpies over the entire range of mole fractions. The heat of esterification reaction is calculated on the base of data obtained for heat effects in the mixture, and it was found to be − 3.6 ± 0.2 kJ mol−1. The correlation of the data was carried out using NRTL model and Redlich–Kister equation.

Keywords

Thermochemistry Excess enthalpy Heat of esterification reaction Calorimetry 

Notes

Acknowledgements

The study was supported by Russian Foundation for Basic Research, and N. Tsvetov is grateful for the RFBR Grant 18-33-00148. Alexandra Golikova acknowledges for the Scholarships of President of Russian Federation (SP-2680.2018.1). Maria Toikka is grateful to Russian Foundation of Basic Research for the support of this study (RFBR Project 18-33-20138). Maria Toikka also acknowledges the Scholarships of President of Russian Federation (SP-2140.2016.1). The investigations were carried out using the equipment of the Resource Centre of Thermogravimetric and Calorimetric Research (Research Park of St. Petersburg State University).

References

  1. 1.
    Górak A, Olujic Z. Distillation: equipment and processes. Cambridge: Academic Press; 2014.Google Scholar
  2. 2.
    Sundmacher K, Kienle A, editors. Reactive distillation: status and future directions. Weinheim: Wiley; 2003.Google Scholar
  3. 3.
    Brandt S, Horstmann S, Steinigeweg S, Gmehling J. Phase equilibria and excess properties for binary systems in reactive distillation processes. Part II. Ethyl acetate synthesis. Fluid Phase Equilib. 2014;376:48–54.CrossRefGoogle Scholar
  4. 4.
    Kimura T, Kosuge Y, Fujisawa M. Enthalpies of binary mixtures containing limonene + aliphatic alcohols at 298.15 K. J Therm Anal Calorim. 2017;129:1741–50.CrossRefGoogle Scholar
  5. 5.
    Li C-H, Jiang Y, Jiang J-H, Li X, Xiao S-X, Tao L-M, et al. Standard molar enthalpy of formation of [(C12H8N2)2Bi(O2NO)3] and its biological activity on Schizosaccharomyces pombe. J Therm Anal Calorim. 2017;128:1743–51.CrossRefGoogle Scholar
  6. 6.
    Lutkin AI, Chernikov VV, Krutova ON, Skvortsov IA. Standard enthalpies of formation of l-lysine and the products of its dissociation in aqueous solutions. J Therm Anal Calorim. 2017;130:457–60.CrossRefGoogle Scholar
  7. 7.
    Golikova A, Tsvetov N, Anufrikov Y, Toikka M, Zvereva I, Toikka A. Excess enthalpies of the reactive system ethanol + acetic acid + ethyl acetate + water for chemically equilibrium states at 313.15 K. J Therm Anal Calorim. 2018;134:835–41.CrossRefGoogle Scholar
  8. 8.
    Maksimuk Y, Ponomarev D, Sushkova A, Krouk V, Vasarenko I, Antonava Z. Standard molar enthalpy of formation of vanillin. J Therm Anal Calorim. 2018;131:1721–33.CrossRefGoogle Scholar
  9. 9.
    Malik S, Gupta H, Sharma VK. Excess heat capacities and excess molar enthalpies of the mixtures containing tetrahydropyran, piperidine and cyclic alkanones. J Therm Anal Calorim. 2018;132:1263–75.CrossRefGoogle Scholar
  10. 10.
    Mirskaya V, Ibavov NV, Nazarevich D. Phase transitions in binary system of n-heptane + water. J Therm Anal Calorim. 2018;133:1109–13.CrossRefGoogle Scholar
  11. 11.
    Oleinik K, Bykov A, Pastukhov E. Mixing enthalpy of Ag–Sn system at 1150 °C. J Therm Anal Calorim. 2018;133:1129–34.CrossRefGoogle Scholar
  12. 12.
    Pashchenko LL, Druzhinina AI. Enthalpy of vaporization measurements by calorimetric techniques: saturated vapor pressures of perfluorooctylbromide. J Therm Anal Calorim. 2018;133:1173–9.CrossRefGoogle Scholar
  13. 13.
    Salceanu D-C, Pincu E, Bruni G, Marini A, Meltzer V. Physico-chemical study of norfloxacin and metronidazole binary mixtures. J Therm Anal Calorim. 2018;132:1095–103.CrossRefGoogle Scholar
  14. 14.
    Skalamprinos S, Galan I, Hanein T, Glasser F. Enthalpy of formation of ye’elimite and ternesite. J Therm Anal Calorim. 2018;131:2345–59.CrossRefGoogle Scholar
  15. 15.
    Suslova EV, Chernyak SA, Savilov SV, Strokova NE, Lunin VV. Enthalpy of formation of carboxylated carbon nanotubes depending on the degree of functionalization. J Therm Anal Calorim. 2018;133:313–9.CrossRefGoogle Scholar
  16. 16.
    Calvar N, Domínguez A, Tojo J. Vapor–liquid equilibria for the quaternary reactive system ethyl acetate + ethanol + water + acetic acid and some of the constituent binary systems at 101.3kPa. Fluid Phase Equilib. 2005;235:215–22.CrossRefGoogle Scholar
  17. 17.
    Tiwari A, Keshav A, Bhowmick S, Sahu O. Liquid-liquid Equilibria (LLE) of the quaternary mixture (acetic acid + ethanol + ethyl acetate + water) arising out of esterification reaction: optimization studies. J Mol Liq. 2017;231:86–93.CrossRefGoogle Scholar
  18. 18.
    Toikka AM, Trofimova MA, Toikka MA. Chemical equilibrium of esterification in AcOH–EtOH–H2O–EtOAc system at 293.15 K. Russ Chem Bull. 2012;61:662–4.CrossRefGoogle Scholar
  19. 19.
    Toikka M, Samarov A, Trofimova M, Golikova A, Tsvetov N, Toikka A. Solubility, liquid–liquid equilibrium and critical states for the quaternary system acetic acid–ethanol–ethyl acetate–water at 303.15 K and 313.15K. Fluid Phase Equilib. 2014;373:72–9.CrossRefGoogle Scholar
  20. 20.
    Golikova A, Samarov A, Trofimova M, Rabdano S, Toikka M, Pervukhin O, et al. Chemical equilibrium for the reacting system acetic acid–ethanol–ethyl acetate-water at 303.15 K, 313.15 K and 323.15 K. J Solution Chem. 2017;46:374–87.CrossRefGoogle Scholar
  21. 21.
    Trofimova M, Toikka M, Toikka A. Solubility, liquid–liquid equilibrium and critical states for the quaternary system acetic acid–ethanol–ethyl acetate–water at 293.15 K. Fluid Phase Equilib. 2012;313:46–51.CrossRefGoogle Scholar
  22. 22.
    Longtin B. Heats of mixing in the ternary system ethanol-acetic acid-ethyl acetate by a rapid approximate method. J Phys Chem. 1942;46:399–405.CrossRefGoogle Scholar
  23. 23.
    Murti P, Van Winkle M. Heats of mixing and excess thermodynamic properties at 25°C of binary systems of methanol, ethyl alcohol, 1-propanol, and 2-propanol with ethyl acetate. Ind Eng Chem Chem Eng Data Ser. 1958;3:65–71.CrossRefGoogle Scholar
  24. 24.
    Lama RF, Lu BC-Y. Excess thermodynamic properties of aqueous alcohol solutions. J Chem Eng Data. 1965;10:216–9.CrossRefGoogle Scholar
  25. 25.
    Carroll BH, Mathews JH. A calorimeter for heats of mixing at elevated temperatures. J Am Chem Soc. 1924;46:30–6.CrossRefGoogle Scholar
  26. 26.
    Letyanina I, Tsvetov N, Zvereva I, Samarov A, Toikka A. Excess molar enthalpies for binary mixtures of n-propanol, acetic acid, and n-propyl acetate at 313.15K and atmospheric pressure. Fluid Phase Equilib. 2014;381:77–82.CrossRefGoogle Scholar
  27. 27.
    Letyanina IA, Tsvetov NS, Zvereva IA, Toikka AM. Measurement and prediction of excess molar enthalpies for ternary mixture n-propanol + acetic acid + n-propyl acetate at 313.15 K. J Therm Anal Calorim. 2016;124:693–9.CrossRefGoogle Scholar
  28. 28.
    Letyanina I, Tsvetov N, Toikka A. Excess molar enthalpies of the ternary mixture n-propanol + acetic acid + water at 313.15 K and atmospheric pressure. Fluid Phase Equilib. 2015;405:150–6.CrossRefGoogle Scholar
  29. 29.
    Wiberg KB, Waldron RF. Lactones. 2. Enthalpies of hydrolysis, reduction, and formation of the C4-C13 monocyclic lactones. Strain energies and conformations. J Am Chem Soc. 1991;113:7697–705.CrossRefGoogle Scholar
  30. 30.
    Wadsö I, Bjerrum J, Trætteberg M, Grönvall A, Zaar B, Diczfalusy E. The heats of hydrolysis of some alkyl acetates. Acta Chem Scand. 1958;12:630–4.CrossRefGoogle Scholar
  31. 31.
    NIST Standard Reference Database 103b, NIST ThermoData Engine Version 5.0—Pure Compounds, Binary Mixtures, and Chemical Reactions. Standard Reference Data Program. Gaithersburg, MD, USA: National Institute of Standards and Technology; 2010.Google Scholar
  32. 32.
    Bart HJ, Kaltenbrunner W, Landschutzer H. Kinetics of esterification of acetic acid with propyl alcohol by heterogeneous catalysis. Int J Chem Kinet. 1996;28:649–56.CrossRefGoogle Scholar
  33. 33.
    Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical Thermodynamics and KineticsSt. Petersburg State UniversitySaint PetersburgRussia
  2. 2.Tananaev Institute of Rare Element and Mineral Chemistry and TechnologyKola Research Center Russian Academy of SciencesApatityRussia
  3. 3.Murmansk Arctic State UniversityApatityRussia

Personalised recommendations