Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 1887–1894 | Cite as

Preparation and characterization of CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 nanocomposites obtained from carboxylate complex combinations

  • Mircea ŞtefănescuEmail author
  • Cornelia Muntean
  • Eniko Berei
  • Titus Vlase
  • Oana Ştefănescu
Article

Abstract

This study reports the preparation and characterization of CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 nanocomposites. In order to obtain 50 mass% CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 nanocomposites, we have used a method based on the thermal decomposition of the precursors Cu(II) and Cr(III) carboxylate type complexes inside the SiO2 matrix. The precursors were formed inside the gels during the redox reaction between Cu(II) and Cr(III) metal nitrates and 1,3-propanediol (1,3PD). As a result of the gels heating, the precursors decomposed at ~ 300 °C leading to the amorphous metal oxides CuO and Cr2O3+x. Cr2O3+x turned to crystalline α-Cr2O3 (crystalline) at 400 °C which subsequently interacted with CuO. Well crystallized Cu2Cr2O4 was obtained at 1000 °C as a result of the interaction between CuCr2O4 and residual CuO formed at 800 °C. In both samples the oxides were homogenously distributed within the amorphous silica matrix. The nanocomposite samples CuCr2O4/SiO2 and Cu2Cr2O4/SiO2 obtained at different annealing temperatures were characterized by thermal analysis, FT-IR spectrometry and powder x-ray diffraction. The results showed that the silica matrix plays a crucial role for the preparation of the desired chromite nanoparticles.

Keywords

Copper chromite Nanocomposite Silica matrix Thermal stability 

Notes

References

  1. 1.
    Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mat Res. 2009;12(1):1–39.CrossRefGoogle Scholar
  2. 2.
    Kaddouri A, Mazzocchia C, Tempesti E, Nomen R, Sempere J. Sol–gel processing of copper–chromium catalysts for ester hydrogenation. J Therm Anal. 1998;53:533–45.CrossRefGoogle Scholar
  3. 3.
    Lee YK, Park S, Kwo YS. Formation of methylpyrazine on a copper–chromite catalyst. Tecnol Ciencia Ed (IMIQ). 1989;4(1):34–41.Google Scholar
  4. 4.
    Hainic F, Plesch G, Dolezel P, Oveckova J. Study of copper chromite catalyst, III. Structure and catalytic activity of copper chromite catalyst in reductive alkylation reaction. React Kinet Catal Lett. 1986;32(2):393–8.CrossRefGoogle Scholar
  5. 5.
    Kaddouri A, Dupont N, Gelin P, Delichere P. Methane combustion over copper chromite catalysts prepared by the sol–gel process. Catal Lett. 2011;141:1581–9.CrossRefGoogle Scholar
  6. 6.
    Geng Q, Zhao X, Gao X, Yang S, Liu G. Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints. J Sol-Gel Sci Technol. 2012;61:281–8.CrossRefGoogle Scholar
  7. 7.
    Pishch IV, Radion EV, Sokolovskaya DM, Popovskaya NF. A pigment based on coprecipitated chromium(III) and copper(II) hydroxides. Glass Ceram. 1996;53:7–8.Google Scholar
  8. 8.
    Saadi S, Bouguelia A, Trari M. Photocatalytic hydrogen evolution over CuCrO2. Sol Energy. 2006;80:272–80.CrossRefGoogle Scholar
  9. 9.
    Zhou S, Fang X, Deng Z, Li D, Dong W, Tao R, Meng G, Wang T. Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals. Sensor Actuat B. 2009;14:119–23.CrossRefGoogle Scholar
  10. 10.
    Ahmad T, Phul R, Alam P, Lone IH, Shahazad M, Ahmed J, Ahamad T, Alshehri SM. Dielectric, optical and enhanced photocatalytic properties of CuCrO2 nanoparticles. RSC Adv. 2017;7:27549–57.CrossRefGoogle Scholar
  11. 11.
    Ketir W, Bouguelia A, Trari M. NO3 removal with a new delafossite CuCrO2 photocatalyst. Desalination. 2009;244:144–52.CrossRefGoogle Scholar
  12. 12.
    Asemi M, Ghanaatshoar M. Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram Int. 2016;42:6664–72.CrossRefGoogle Scholar
  13. 13.
    Jiang JZ, Goya GF, Rechenberg HR. Magnetic properties of nanostructured CuFe2O4. J Phys: Condens Matter. 1999;11:4063–78.Google Scholar
  14. 14.
    Prince E. Chrystal and magnetic structure of copper chromite. Acta Cryst. 1954;10:554–6.CrossRefGoogle Scholar
  15. 15.
    Frontzek M, Ehlers G, Podlesnyak A, Cao H, Matsuda M, Zaharko O, Aliouane N, Barilo S, Shiryaev SV. Magnetic structure of CuCrO2: a single crystal neutron diffraction study. J Phys Condens Matter. 2012;24(1):016004.  https://doi.org/10.1088/0953-8984/24/1/016004.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen HY, Yang CC. Transparent p-type Zn-doped CuCrO2 films by sol–gel processing. Surf Coat Technol. 2013;231:277–80.CrossRefGoogle Scholar
  17. 17.
    Jlaiel F, Amami M, Boudjada N, Strobel P, Ben Salah A. Metal transition doping effect on the structural and physical properties of delafossite-type oxide CuCrO2. J Alloy Compd. 2011;509:7784–8.CrossRefGoogle Scholar
  18. 18.
    Marquardt MA, Ashmore NA, Cann DP. Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films. 2006;496:146–56.CrossRefGoogle Scholar
  19. 19.
    Jacob KT, Kale GM, Iyengar GNK. Oxygen potentials, Gibbs’ energies and phase relations in the Cu-Cr-O system. J Mater Sci. 1986;21:2753–8.CrossRefGoogle Scholar
  20. 20.
    Gharagozlou M. Study on the influence of annealing temperature and ferrite content on the structural and magnetic properties of x(NiFe2O4)/(100 − x)SiO2 nanocomposites. J Alloys Compd. 2010;495:217–23.CrossRefGoogle Scholar
  21. 21.
    Stefanescu O, Vlase G, Barbu M, Barvinschi P, Stefanescu M. Preparation of CuFe2O4 nanocomposite strating from Cu(II)-Fe(III) carboxylates embedded in hybrid silica gels. J Therm Anal Calorim. 2013;113:1245–53.CrossRefGoogle Scholar
  22. 22.
    Barbu M, Stefanescu M, Stoia M, Vlase G, Barvinschi P. New sunthesis method for M(II) cromites/silica nanocomposites by thermal decomposition of some precursors formed inside the silica gels. J Therm Anal Calorim. 2012;108:1059–66.CrossRefGoogle Scholar
  23. 23.
    Stefanescu O, Stefanescu M. New Fe(III) malonate type complex combination for development of magnetic nanosized γ-Fe2O3. J Organomet Chem. 2013;740:50–5.CrossRefGoogle Scholar
  24. 24.
    Brinker CJ, Scherer GW. Sol–gel science—the physics and chemistry of sol–gel processing. San Diego: Academic Press; 1990.Google Scholar
  25. 25.
    Pathak A, Pramanik P. Nano-particles of oxides through chemical methods. PINSA. 2001;67(1):47–70.Google Scholar
  26. 26.
    Stefanescu M. Consideration on the formation of the mixed oxides starting from substances with high reactivity. University of Timisoara, Romania: PhD Thesis; 1993.Google Scholar
  27. 27.
    Stefanescu M, Barbu M, Vlase T, Barvinschi P, Barbu-Tudoran L, Stoia M. Novel low temperature synthesis method for nanocrystalline zinc and magnesium chromites. Thermochim Acta. 2011;526:130–6.CrossRefGoogle Scholar
  28. 28.
    Levy LW, Goreaud M. Thermolyse einiger Kupfer (II)-Chromate, Anwendung auf die Analyse einiger Katalysatoren. Bull Soc Chim Fr. 1973;830.  https://doi.org/10.1002/chin.197324051.CrossRefGoogle Scholar
  29. 29.
    Ursu D, Miclau M. Thermal stability of nanocrystalline 3R-CuCrO2. J Nanopart Res. 2014;16:2160.  https://doi.org/10.1007/s11051-013-2160-x.CrossRefGoogle Scholar
  30. 30.
    Lenza RFS, Vasconcelos WL. Preparation of silica by sol–gel method using formamide. Mater Res. 2001;4:189–94.CrossRefGoogle Scholar
  31. 31.
    Nakamoto K. Infrared spectra of inorganic and coordination compounds. New York: Wiley; 1970.Google Scholar
  32. 32.
    Stefanescu M, Stoia M, Stefanescu O. Nanocomposites with controlled properties obtained by the thermal treatment of some thetraethil-ortosilicate-diols-metal nitrates gels. In: Morris RE, editor. The sol–gel process. New York: Nova Science Publishers; 2011.Google Scholar
  33. 33.
    Berei E, Muntean C, Stefanescu O, Niculescu M, Stefanescu M. Preparation of CuCr2O4 nanopowders using two different chromium sources. J Therm Anal Calorim. 2018;131(1):137–44.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mircea Ştefănescu
    • 1
    Email author
  • Cornelia Muntean
    • 1
  • Eniko Berei
    • 1
  • Titus Vlase
    • 2
  • Oana Ştefănescu
    • 1
  1. 1.Chemistry DepartmentPolitehnica University TimisoaraTimisoaraRomania
  2. 2.Chemistry DepartmentWest University of TimisoaraTimisoaraRomania

Personalised recommendations