Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 1379–1393 | Cite as

Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model

  • B. Ramadevi
  • K. Anantha Kumar
  • V. SugunammaEmail author
  • J. V. Ramana Reddy
  • N. SandeepEmail author
Article

Abstract

The knowledge of heat transfer of MHD flows across a stretched surface plays a crucial role in transportation, heat exchangers, fibre coating, magnetic drug treatment, etc. The present research article delivers a numerical examination of 2D magnetohydrodynamic nonlinear radiative flow of micropolar fluid towards a stretching surface. The fluid motion is steady and laminar. The impacts of chemical reaction, cross-diffusion and thermal and solutal Biot numbers are deemed. Combined influence of heat and mass transfer attributes is investigated. For effective heat transfer, Cattaneo–Christov heat flux term is added to the energy equation. The appropriate transmutations are adopted for rehabilitating the flow governing PDEs into dimensionless ordinary ones. Further, these ODEs are resolved by R.K.F-4 with a shooting system. The graphs are plotted to picture the flow fields for the flow regulating parameters. The friction factor, couple stress and mass and thermal transport rates are presented for the flow relevant variables. From the results, we spotted that there are an enhancement in velocity but a decrement in temperature and concentration fields with the swelling in the values of primary slip parameter. Also the temperature and concentration fields are enhanced with the boosting values of Dufour and Soret numbers, respectively.

Keywords

Micropolar fluid Soret and Dufour numbers Nonlinear Roseland approximation Cattaneo–Christov heat flux Stretching surface 

Notes

References

  1. 1.
    Chiam TC. Micropolar fluid flow over a stretching sheet. ZAAM J Appl Math Mech. 1982;62:565–8.CrossRefGoogle Scholar
  2. 2.
    Hayat T, Nawaz M, Obaidat S. Axisymmetric magnetohydrodynamic flow of micropolar fluid between unsteady stretching surfaces. Appl Math Mech Eng Ed. 2011;32:361–74.CrossRefGoogle Scholar
  3. 3.
    Ahmad K, Ishak A, Nazar M. Micropolar fluid flow and heat transfer over a nonlinearly stretching plate with viscous dissipation. Math Probl Eng. 2013.  https://doi.org/10.1155/2013/257161.CrossRefGoogle Scholar
  4. 4.
    Mandal IC, Mukhopadhyay S. Nonlinear convection in micropolar fluid flow past an exponentially stretching sheet in an exponentially moving stream with thermal radiation. Mech Adv Mater Struct. 2018.  https://doi.org/10.1080/15376494.2018.1472325.CrossRefGoogle Scholar
  5. 5.
    Reddy GJ, Kethireddy B, Beg OA. Flow visualization using heatlines for unsteady radiative hydromagnetic micropolar convection from a vertical slender hollow cylinder. Int J Mech Sci. 2018;140:493–505.CrossRefGoogle Scholar
  6. 6.
    Reddy GJ, Kethireddy B, Rani HP. Bejan’s heat flow visualization for unsteady micropolar fluid past a vertical slender hollow cylinder with large Grashof number. Int J Appl Comput Math. 2018;4:1–25.Google Scholar
  7. 7.
    Cattaneo C. Sulla conduzionedelcalore. Atti Semin Mat Fis Univ Modena Reggio Emilia. 2009;3:83–101.Google Scholar
  8. 8.
    Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mech Res Commun. 2009;36:481–6.CrossRefGoogle Scholar
  9. 9.
    Ramandevi B, Reddy JVR, Sugunamma V, Sandeep N. Combined influence of viscous dissipation and nonuniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo–Christov heat flux. Alex Eng J. 2018;57:1009–18.CrossRefGoogle Scholar
  10. 10.
    Saleem S, Awais M, Nadeem S, Sandeep N, Mustafa T. Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo–Christov heat flux model. Chin J Phys. 2017.  https://doi.org/10.1016/j.cjph.2017.04.005.CrossRefGoogle Scholar
  11. 11.
    Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Magnetohydrodynamic Cattaneo–Christov flow past a cone and a wedge with variable heat source/sink. Alex Eng J. 2018;57(1):435–43.CrossRefGoogle Scholar
  12. 12.
    Reddy JVR, Sugunamma V, Sandeep N. Cross diffusion effects on MHD flow over three different geometries with Cattaneo–Christov heat flux. J Mol Liq. 2017.  https://doi.org/10.1016/j.molliq.2016.09.047.CrossRefGoogle Scholar
  13. 13.
    Khan MI, Alsaedi A, Shehzad SA, Hayat T. Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions. Res Phys. 2017;7:2255–60.Google Scholar
  14. 14.
    Ramadevi B, Sugunamma V, Anantha Kumar K, Reddy JVR. MHD flow of Carreau fluid over a variable thickness melting surface subject to Cattaneo–Christov heat flux. Multi Model Mater Struct. 2018.  https://doi.org/10.1108/MMMS-12-2017-0169.CrossRefGoogle Scholar
  15. 15.
    Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Carreau fluid flow past a melting surface with Cattaneo–Christov heat flux. Appl Math Sci Comput. 2019.  https://doi.org/10.1007/978-3-030-01123-9-32.CrossRefGoogle Scholar
  16. 16.
    El-Amin MF. Magnetohydrodynamic free convection and mass transfer flow in micropolar fluid with constant suction. J Magn Magn Mater. 2001;234:567–74.CrossRefGoogle Scholar
  17. 17.
    Ishak A, Nazar R, Pop I. MHD boundary-layer flow of a micropolar fluid past a wedge with variable wall temperature. Acta Mech. 2008;196:75–86.CrossRefGoogle Scholar
  18. 18.
    Mahmoud MAA, Waheed SE. MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption) and slip velocity. J Egypt Math Soc. 2012;20:20–7.CrossRefGoogle Scholar
  19. 19.
    Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Impact of frictional heating on MHD radiative ferrofluid past a convective shrinking surface. In: Defect and diffusion forum, vol. 378, 2017. pp. 157–74.Google Scholar
  20. 20.
    Mahmoodi M, Esfe MH, Akbari M, Karimipour A, Afrand M. Magneto-natural convection in square cavities with a source-sink pair on different walls. Int J Appl Electromagn Mech. 2015;47(1):21–32.CrossRefGoogle Scholar
  21. 21.
    Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Esfe MH, Toghraie MHD. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten potassium. Int J Appl Mech. 2015;7(4):1550052.CrossRefGoogle Scholar
  22. 22.
    Afrand M, Rostami S, Akbari M, Wongwises S, Esfe MH, Karimipour A. Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium. Int J Heat Mass Transf. 2015;90:418–26.CrossRefGoogle Scholar
  23. 23.
    Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Thermal Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7901-8.CrossRefGoogle Scholar
  24. 24.
    Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Thermal Anal Calorim. 2019;135(4):2599–611.CrossRefGoogle Scholar
  25. 25.
    Takhar HS, Agarwal RS, Bhargava R, Jain S. Mixed convection flow of a micropolar fluid over a stretching sheet. Heat Mass Transf. 1998;34:213–9.CrossRefGoogle Scholar
  26. 26.
    Das K. Slip effects on MHD mixed convection stagnation point flow of a micropolar fluid towards a shrinking vertical sheet. Comput Math Appl. 2012;63:255–67.CrossRefGoogle Scholar
  27. 27.
    Das S, Jana RN, Makinde OD. Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and joule heating. Alex Eng J. 2015.  https://doi.org/10.1016/j.aej.2015.03.003.CrossRefGoogle Scholar
  28. 28.
    Abdel-Wahed MS. Lorentz force effect on mixed convection micropolar flow in a vertical conduit. Eur Phys J Plus. 2017.  https://doi.org/10.1140/epjp/i2017-11449-1.CrossRefGoogle Scholar
  29. 29.
    Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. MHD flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink. Int J Fluid Mech Res. 2019.  https://doi.org/10.1615/InterJFluidMechRes.2018025940.CrossRefGoogle Scholar
  30. 30.
    Khan SM, Hammad M, Batool S, Kaneez H. Investigation of MHD effects and heat transfer for the upper-convected Maxwell (UCM-M) micropolar fluid with joule heating and thermal radiation using a hyperbolic heat flux equation. Eur Phys J Plus. 2017.  https://doi.org/10.1140/epjp/i2017-11428-6.CrossRefGoogle Scholar
  31. 31.
    Anantha Kumar K, Sugunamma V, Sandeep N. Impact of non-linear radiation on MHD non-aligned stagnation point flow of micropolar fluid over a convective surface. J Non-Equilib Thermodyn. 2019.  https://doi.org/10.1515/jnet-2018-0022.CrossRefGoogle Scholar
  32. 32.
    Mustafa M, Mushtaq A, Hayat T, Alsaedi A. Non-aligned MHD stagnation-point flow of upper-convected Maxwell fluid with nonlinear thermal radiation. Neural Comput Appl. 2018;30:1549–55.CrossRefGoogle Scholar
  33. 33.
    Mahdy A. Soret and Dufour effect on double diffusion mixed convection from a vertical surface in a porous medium saturated with a non-Newtonian fluid. J Non-Newton Fluid Mech. 2010;165:568–75.CrossRefGoogle Scholar
  34. 34.
    Cheng CY. Soret and Dufour effects on natural convection boundary layer flow over a vertical cone in a porous medium with constant wall heat and mass fluxes. Int Commun Heat Mass Transf. 2011;38:44–8.CrossRefGoogle Scholar
  35. 35.
    Pal D, Chatterjee S. Soret and Dufour effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous medium. Appl Math Comput. 2013;219:7556–74.Google Scholar
  36. 36.
    Raju CSK, Sandeep N. Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion. J Mol Liq. 2016;215:115–26.CrossRefGoogle Scholar
  37. 37.
    Reddy JVR, Anantha Kumar K, Sugunamma V, Sandeep N. Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: a comparative study. Alex Eng J. 2017.  https://doi.org/10.1016/j.aej.2017.03.008.CrossRefGoogle Scholar
  38. 38.
    Postelnicu A. Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transf. 2007;43:595–602.CrossRefGoogle Scholar
  39. 39.
    Patil PM, Kulkarni PS. Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation. Int J Thermal Sci. 2008;47:1043–54.CrossRefGoogle Scholar
  40. 40.
    Shehzad SA, Hayat T, Qasim M, Asghar S. Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Braz J Chem Eng. 2013;30:187–95.CrossRefGoogle Scholar
  41. 41.
    Swapna G, Kumar L, Rana P, Singh B. Finite element modelling of a double-diffusive mixed convection flow of a chemically-reacting magneto-micropolar fluid with convective boundary condition. J Taiwan Inst Chem Eng. 2015;47:18–27.CrossRefGoogle Scholar
  42. 42.
    Hayat T, Shehzad SA, Qasim M, Obaidat S. Flow of a second grade fluid with convective boundary conditions. Therm Sci. 2011;15:253–61.CrossRefGoogle Scholar
  43. 43.
    Shehzad SA, Alsaadi FE, Monaque SJ, Hayat T. Soret and Dufour effects on the stagnation point flow of Jeffrey fluid with convective boundary condition. Eur Phys J Plus. 2013.  https://doi.org/10.1140/epjp/i2013-13056-6.CrossRefGoogle Scholar
  44. 44.
    Anantha Kumar K, Reddy JVR, Sugunamma V, Sandeep N. Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink. Heat Transf Res. 2019;50(6):581–603.CrossRefGoogle Scholar
  45. 45.
    Esfe MH, Arani AAA, Yan WM, Ehteram H, Aghaie A, Afrand M. Natural convection in a trapezoidal enclosure filled with carbon nanotube–EG–water nanofluid. Int J Heat Mass Transf. 2016;92:76–82.CrossRefGoogle Scholar
  46. 46.
    Esfe MH, Ghadi AZ, Noroozi MZ. Numerical simulation of mixed convection within nanofluid-filled cavities with two adjacent moving walls. Trans Can Soc Mech Eng. 2015;37(4):1073–89.CrossRefGoogle Scholar
  47. 47.
    Esfe MH, Akbari M, Karimipour A, Afrand M, Mahian O, Wongwises S. Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties. Int J Heat Mass Transf. 2015;85:656–66.CrossRefGoogle Scholar
  48. 48.
    Esfe MH, Arani AAA, Niroumand AH, Yan WM, Karimipour A. Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int J Heat Mass Transf. 2015;89:783–91.CrossRefGoogle Scholar
  49. 49.
    Fereidoon A, Saedodin S, Esfe MH, Noroozi MJ. Evaluation of mixed convection in inclined square lid-driven cavity filled with Al2O3/water nano-fluid. Eng Appl Comput Fluid Mech. 2013;7(1):55–65.Google Scholar
  50. 50.
    Esfe MH, Ahangar MRH, Rejvani M, Toghraie D, Mohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.CrossRefGoogle Scholar
  51. 51.
    Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Thermal Anal Calorim. 2018;132:1291–306.CrossRefGoogle Scholar
  52. 52.
    Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for Darcy–Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Thermal Anal Calorim. 2019.  https://doi.org/10.1007/s10973-018-7847-x.CrossRefGoogle Scholar
  53. 53.
    Maleki H, Safaei MR, Alrashed AA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Thermal Anal Calorim. 2019;135:1655–66.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of MathematicsSri Venkateswara UniversityTirupatiIndia
  2. 2.Department of Sciences and HumanitiesKCITSMarkapurIndia
  3. 3.Department of MathematicsCentral University of KarnatakaKalaburagiIndia

Personalised recommendations