Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 855–862 | Cite as

Packing and properties of composite phase change energy storage materials based on SiC nanowires and Na2SO4·10H2O

  • Jian Tie
  • Xin Liu
  • Shengnian TieEmail author
  • Jiqing Zhang
  • Siyuan Jiang
  • Ruixin Tao
  • Xiaobin Huang
Article

Abstract

SiC nanowires were prepared by sol–gel sintering at high temperature, then shaped and encapsulated Na2SO4·10H2O-based composite phase change energy storage materials. The properties of these materials, named PCMs-1, PCMs-3, and PCMs-5, were then investigated. The best-shaped phase change energy storage material was prepared when the content of SiC nanowires added reached 3 mass%. By scanning electron microscopy, PCMs-3 showed that SiC nanowires and Na2SO4·10H2O-based phase change materials have good compatibility with the network layer structure formed by SiC nanowires tightly wrapping the Na2SO4·10H2O-based phase change energy storage materials. The layered phenomenon of Na2SO4·10H2O-based phase change energy storage materials can be effectively reduced in this way, with increased additions of SiC nanowires reducing the degree of undercooling from 2.8 to 1, 0.5 and 0.9 °C with 1, 3 and 5 mass% SiC nanowires, respectively. The thermal conductivity of the phase change materials also improved, with conductivities of PCMs, PCMs-1, 3, 5 being 0.7812, 0.9941, 1.001 and 1.016 W m−1 K−1, respectively. By comparing the latent heat values of PCMs, PCMs-1, 3, 5 phase change energy storage materials thermally cycled 500 times, it was determined that PCMs-3 had the lowest phase change latent heat loss, effectively improving the cycle life of the phase change energy storage materials.

Keywords

Phase change materials Na2SO4·10H2SiC nanowires 

List of symbols

Rc

The critical radius of heterogeneous nucleation

γsl

The specific surface free energy of the interface between crystal and fluid

Ωs

The volume of single atom

Δg

The change of free energy caused by the transition of single atom and fluid phases to crystal phase

ΔG

The critical nucleation work

ΔGv

The volume free energy of crystallization

ΔGs

The interface free energy of crystallization

θ

The angle between liquid surface tension and solid–liquid interfacial tension

σLB

The surface free energy between fluid

σSB

The surface free energy between the crystal nucleus

σLS

The surface free energy between the crystal nucleus and fluid

ΔT

Degree of undercooling (°C)

Tom

Initial dissolution temperature (°C)

Tem

Termination dissolution temperature (°C)

Toc

Initial solidification temperature (°C)

Tec

Termination solidification temperature (°C)

ΔHm

Melting latent heat (J g−1)

ΔHc

Solidification latent heat (J g−1)

λ

Thermal conductivity at 20 °C (W m−1 K−1)

Abbreviations

PCMs

Na2SO4·10H2O-based composite phase change energy storage materials

PCMs-1

SiC nanowires of 1 mass% were added in PCMs

PCMs-3

SiC nanowires of 3 mass% were added in PCMs

PCMs-5

SiC nanowires of 5 mass% were added in PCMs

Notes

Funding

Funding was provided by Scientific and technological support Project of Haixi Prefecture, Qinghai Province (Grant No. 174610137100713).

References

  1. 1.
    Guarino F, Athienitis A, Cellura M, Bastien D. PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates. Appl Energy. 2017;185:95–106.  https://doi.org/10.1016/j.apenergy.2016.10.046.CrossRefGoogle Scholar
  2. 2.
    Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:1072–89.  https://doi.org/10.1016/j.rser.2016.12.012.CrossRefGoogle Scholar
  3. 3.
    Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev. 2017;74:26–50.  https://doi.org/10.1016/j.rser.2017.01.169.CrossRefGoogle Scholar
  4. 4.
    Wang W, Wu Z, Li B, Sundén B. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. J Therm Anal Calorim. 2018;136(3):1037–51.  https://doi.org/10.1007/s10973-018-7765-y.CrossRefGoogle Scholar
  5. 5.
    Ricklefs A, Thiele AM, Falzone G, Sant G, Pilon L. Thermal conductivity of cementitious composites containing microencapsulated phase change materials. Int J Heat Mass Transf. 2017;104:71–82.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.013.CrossRefGoogle Scholar
  6. 6.
    Jiang ZP, Tie SN. Preparation and properties of Glauber’s salt-based composite phase change materials by physical method. J Synth Cryst. 2015;12(44):3639–45.  https://doi.org/10.16553/j.cnki.issn1000-985x.2015.12.050.CrossRefGoogle Scholar
  7. 7.
    Xin Liu, Shengnian Tie, Jian Tie. Energy storage properties of mans nitro phase transition materials of muli-walled carbon nano-tubes of greenhouse. Trans Chin Soc Agric Eng. 2016;32(6):226–31.  https://doi.org/10.11975/j.issn.1002-6819.2016.06.031.CrossRefGoogle Scholar
  8. 8.
    Jiang G, Chen W, Xia W. Environmental-sensitive hyperbranched polymers as drug carriers. Des Monomers Polym. 2008;11(2):105–22.  https://doi.org/10.1163/156855508x298017.CrossRefGoogle Scholar
  9. 9.
    Chen C, Wang L, Huang Y. Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials. Mater Lett. 2009;63(5):569–71.  https://doi.org/10.1016/j.matlet.2008.11.033.CrossRefGoogle Scholar
  10. 10.
    Sarı A, Bicer A, Al-Sulaiman FA, Karaipekli A, Tyagi VV. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: preparation and thermal energy storage properties. Energy Build. 2018;164:166–75.  https://doi.org/10.1016/j.enbuild.2018.01.009.CrossRefGoogle Scholar
  11. 11.
    Zhu F-R, Zhang L, Zeng J-L, Zhu L, Zhu Z, Zhu X-Y, et al. Preparation and thermal properties of palmitic acid/polyaniline/copper nanowires form-stable phase change materials. J Therm Anal Calorim. 2014;115(2):1133–41.  https://doi.org/10.1007/s10973-013-3508-2.CrossRefGoogle Scholar
  12. 12.
    Milián YE, Gutiérrez A, Grágeda M, Ushak S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew Sustain Energy Rev. 2017;73:983–99.  https://doi.org/10.1016/j.rser.2017.01.159.CrossRefGoogle Scholar
  13. 13.
    Lv P, Liu C, Rao Z. Review on clay mineral-based form-stable phase change materials: preparation, characterization and applications. Renew Sustain Energy Rev. 2017;68:707–26.  https://doi.org/10.1016/j.rser.2016.10.014.CrossRefGoogle Scholar
  14. 14.
    Ferri JM, Garcia-Garcia D, Carbonell-Verdu A, Fenollar O, Balart R. Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. J Appl Polym Sci. 2017.  https://doi.org/10.1002/app.45751.CrossRefGoogle Scholar
  15. 15.
    Liu C, Rao Z, Li Y. Composites enhance heat transfer in paraffin/melamine resin microencapsulated phase change materials. Energy Technol. 2016;4(4):496–501.  https://doi.org/10.1002/ente.201500309.CrossRefGoogle Scholar
  16. 16.
    Onder E, Sarier N, Ukuser G, Ozturk M, Arat R. Ultrasound assisted solvent free intercalation of montmorillonite with PEG1000: a new type of organoclay with improved thermal properties. Thermochim Acta. 2013;566:24–35.  https://doi.org/10.1016/j.tca.2013.05.021.CrossRefGoogle Scholar
  17. 17.
    Li WQ, Qu ZG, He YL, Tao WQ. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin. Appl Therm Eng. 2012;37:1–9.  https://doi.org/10.1016/j.applthermaleng.2011.11.001.CrossRefGoogle Scholar
  18. 18.
    Liu X, Tie J, Tie SN. Corrosion on metal packaging materials by sodium sulfate decahydrate composite phase change material. J Synth Cryst. 2016;45(4):986–94.  https://doi.org/10.16553/j.cnki.issn1000-985x.2016.04.024.CrossRefGoogle Scholar
  19. 19.
    Zhang X, Liu H, Huang Z, Yin Z, Wen R, Min X, et al. Preparation and characterization of the properties of polyethylene glycol @ Si3N4 nanowires as phase-change materials. Chem Eng J. 2016;301:229–37.  https://doi.org/10.1016/j.cej.2016.05.024.CrossRefGoogle Scholar
  20. 20.
    Chen C, Wang L, Huang Y. A novel shape-stabilized PCM: electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite. Mater Lett. 2008;62(20):3515–7.  https://doi.org/10.1016/j.matlet.2008.03.034.CrossRefGoogle Scholar
  21. 21.
    Chen C, Wang L, Huang Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer. 2007;48(18):5202–52077.  https://doi.org/10.1016/j.polymer.2007.06.069.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Jian Tie
    • 1
  • Xin Liu
    • 2
  • Shengnian Tie
    • 2
    Email author
  • Jiqing Zhang
    • 2
  • Siyuan Jiang
    • 2
  • Ruixin Tao
    • 2
  • Xiaobin Huang
    • 1
  1. 1.College of Physics and Electronic Information EngineeringQinghai Normal UniversityXiningPeople’s Republic of China
  2. 2.Qinghai UniversityXiningPeople’s Republic of China

Personalised recommendations