Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 991–997 | Cite as

Cerium influence on the thermal properties and structure of high-alkaline borosilicate glasses

  • V. E. EremyashevEmail author
  • D. A. Zherebtsov
  • M. P. Brazhnikov
  • R. T. Zainullina
  • E. I. Danilina
Article
  • 43 Downloads

Abstract

The influence of cerium oxide on the thermal properties and the glass structure has been studied for the Li2O–(Na2O–K2O)–B2O3–SiO2 system. It has been established that cerium is completely soluble in the quenched glass during the synthesis if addition of CeO2 is 0–10 mol%. The cubic ceria phase is formed in glass either during the synthesis if addition of CeO2 is 20 mol% or after thermal treatment (annealing) if the glass contains 10–20 mol% of CeO2. The studied lithium borosilicate glasses have low thermal stability and demonstrate significant difference in the crystal phase formation for Ce-free and Ce-containing glasses after annealing. The lithium–sodium and lithium–potassium glasses have much higher thermal stability toward crystallization regardless of Ce content. The obtained results are relevant for improving the properties of matrix materials of similar borosilicate systems used for immobilization of radioactive waste.

Keywords

Borosilicate glass Thermal properties Cerium Crystallization 

Notes

Acknowledgements

The results were obtained while performing the state assignment of Russian Ministry of High Education and Science (Project 5-100, Projects 11.9643.2017/8.9, 4.5749.2017/7.8 and 015-00613-019-00), partially supported by Act 211 Government of the Russian Federation, Contract No. 02.A03.21.0011.

References

  1. 1.
    Hayward PJ. Glass-ceramics. In: Lutze W, Ewing RC, editors. Radioactive waste forms for the future. Amsterdam: Elsevier; 1988.Google Scholar
  2. 2.
    Donald IW. Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes. Chichester: Wiley; 2010.CrossRefGoogle Scholar
  3. 3.
    Caurant D, Loiseau P, Majérus O, Aubin-Chevaldonnet V, Bardez I, Quintas A. Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes. New York: Nova Science Publishers; 2009.Google Scholar
  4. 4.
    Cachia JN, Deschanels X, Auwer CD, Pinet O, Phalippou J, Hennig C, Scheinost A. Enhancing cerium and plutonium solubility by reduction in borosilicate glass. J Nucl Mater. 2006;352:182–9.CrossRefGoogle Scholar
  5. 5.
    Sasmal N, Garai M, Karmakar B. Influence of Ce, Nd, Sm and Gd oxides on the properties of alkaline-earth borosilicate glass sealant. J Asian Ceram Soc. 2016;4:29–38.CrossRefGoogle Scholar
  6. 6.
    Deshpande VK, Taikar Ramesh N. Effect of cerium oxide addition on electrical and physical properties of alkali borosilicate glasses. Mater Sci Eng B. 2010;172(1):6–8.CrossRefGoogle Scholar
  7. 7.
    El-Damrawi G, Hassan AK, Ehmead S, El-Shahawy A. Advantage of NMR and FTIR spectroscopy to determine structure role of CeO2 in complicated borosilicate glasses: new approach. New J Glass Ceram. 2017;7:22–33.CrossRefGoogle Scholar
  8. 8.
    Wang Z, Cheng L. Structural features and synthesis of CeO2-doped boroaluminosilicate oxyfluoride transparent glass ceramics. J Chem. 2015; ID 597537.Google Scholar
  9. 9.
    McCloy JS, Goel A. Glass-ceramics for nuclear-waste immobilization. MRS Bull. 2017.  https://doi.org/10.1557/mrs.2017.8.CrossRefGoogle Scholar
  10. 10.
    Stefanovsky SV, Skvortsov MV, Stefanovsky OI, Nikonov BS, Presniakov IA, Glazkova IS, Ptashkin AG. Preparation and characterization of borosilicate glass waste form for immobilization of HLW from WWER spent nuclear fuel reprocessing. MRS Adv. 2017;2(11):583–9.CrossRefGoogle Scholar
  11. 11.
    Banerjee D, Sudarsan VK, Joseph A, Das D, et al. Role of TiO2 on physico-chemical properties of cesium borosilicate glasses. J Am Ceram Soc. 2010;93(10):3252–8.  https://doi.org/10.1111/j.1551-2916.2010.03909.x.CrossRefGoogle Scholar
  12. 12.
    Banerjee D, Joseph A, Sudarsan VK, Wattal PK, Das D. Effect of composition and temperature on volatilization of Cs from borosilicate glasses. J Am Ceram Soc. 2012;95(4):1284–9.  https://doi.org/10.1111/j.1551-2916.2012.05077.x.CrossRefGoogle Scholar
  13. 13.
    Reben M, Li H. Thermal stability and crystallization kinetics of MgO–Al2O3–B2O3–SiO2 glasses. Int J Appl Glass Sci. 2011;2:96–107.  https://doi.org/10.1111/j.2041-1294.2011.00039.x.CrossRefGoogle Scholar
  14. 14.
    Eremyashev VE, Zherebtsov DA, Osipova LM, Danilina EI. Thermal study of melting, transition and crystallization of rubidium and cesium borosilicate glasses. Ceram Int. 2016;42:18368–72.CrossRefGoogle Scholar
  15. 15.
    Das A, Goswami M, Krishnan M. Crystallization kinetics of Li2O–Al2O3–GeO2–P2O5 glass–ceramics system. J Therm Anal Calorim. 2018;131(3):2421–31.CrossRefGoogle Scholar
  16. 16.
    Gomes JL, Gonçalves A, Somer A, et al. Thermo-structural analysis of TeO2–Li2O–MoO3 glasses. J Therm Anal Calorim. 2018;134(3):1439–45.CrossRefGoogle Scholar
  17. 17.
    Kalenda P, Koudelka L, Mošner P, et al. Thermal properties and crystallization of BaO–MoO3–P2O5 glasses. J Therm Anal Calorim. 2018;131:2303–10.CrossRefGoogle Scholar
  18. 18.
    Polyakova IG. Alkali borosilicate systems: phase diagrams and properties of glasses. Phys Chem Glass. 2000;41(5):247–58.Google Scholar
  19. 19.
    Wan J, Cheng J, Lu P. The coordination state of B and Al of borosilicate glass by IR spectra. J Wuhan Univ Technol Mater. 2008;23(3):419–21.CrossRefGoogle Scholar
  20. 20.
    Osipov AA, Eremyashev VE, Mazur AS, Tolstoi PM, Osipova LM. Coordination state of aluminum and boron n barium aluminoborate glass. Glass Phys Chem. 2016;42(3):230–7.CrossRefGoogle Scholar
  21. 21.
    Kamitsos EI, Patsis AP, Karakassides MA, Chryssikos GD. Infrared reflectance spectra of lithium borate glasses. J Non Cryst Solids. 1990;126:52–67.CrossRefGoogle Scholar
  22. 22.
    Yiannopoulos YD, Chryssikos GD, Kamitsos EI. Structure and properties of alkaline earth borate glasses. Phys Chem Glasses. 2001;42(3):164–72.Google Scholar
  23. 23.
    Chukanov N. Infrared spectra of mineral species. Berlin: Springer; 2014.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • V. E. Eremyashev
    • 1
    • 2
    Email author
  • D. A. Zherebtsov
    • 1
  • M. P. Brazhnikov
    • 1
  • R. T. Zainullina
    • 2
  • E. I. Danilina
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Institute of Mineralogy SU FRC MG UB RASMiassRussia

Personalised recommendations