Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3525–3533 | Cite as

Effects of Co and Zr additions on the thermal behavior of the Cu81Al19 alloy

  • R. D. A. PintoEmail author
  • L. D. R. Ferreira
  • R. A. G. Silva
Article

Abstract

The thermal behavior of the annealed Cu81Al19 alloy with Co and Zr additions was investigated using differential thermal analysis, differential scanning calorimetry, electrical resistivity measurements, optical microscopy, scanning electron microscopy, Vickers microhardness, and X-ray diffractometry. The results showed that the Co addition slightly increased the critical temperatures of melting and solidification of the Cu81Al19 alloy, suppressed the eutectoid reaction and the β phase ordering, and introduced a new route for the α2 phase disordering. A mechanism to this phenomenon is suggested in the present work. On the other hand, the Zr addition did not significantly alter the critical temperatures of melting and solidification of the Cu81Al19 alloy, decreased the intensity of the eutectoid reaction, and increased the α2 phase disordering rate and the β phase decomposition. Besides that, it introduced a new thermal event at higher temperatures, related to the dissolution of precipitates with Al. Both Zr and Co additions increased the electrical resistivity and the microhardness of the Cu81Al19 alloy due to the precipitation of intermetallic compounds.

Keywords

Cu–Al alloys Phase transformations Intermetallic compounds Order–disorder transitions Eutectoid transformation 

Notes

Acknowledgements

The authors thank CAPES (001), FAPESP (2012/050570-5), and CNPq for financial support.

References

  1. 1.
    Yldiz K. Oxidation of high-temperature Cu–Al–Fe shape memory alloy. J Therm Anal Calorim. 2015.  https://doi.org/10.1007/s10973-015-4912-6.CrossRefGoogle Scholar
  2. 2.
    Kök M, Ata S, Yakinci Z, Aydogdu Y. Examination of phase changes in the CuAl high-temperature shape memory alloy with the addition of a third element. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7176-0.CrossRefGoogle Scholar
  3. 3.
    Zare M, Ketabchi M. Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys. J Therm Anal Calorim. 2016;1:2–8.  https://doi.org/10.1007/s10973-016-5839-2.CrossRefGoogle Scholar
  4. 4.
    Yildiz K, Balci E, Akpinar S. Quenching media effects on martensitic transformation, thermodynamic and structural properties of Cu–Al–Fe–Ti high temperature shape memory alloy. J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-017-6219-2.CrossRefGoogle Scholar
  5. 5.
    Lohan N, Pricop B, Burlacu L, Bujoreanu L. Using DSC for the detection of diffusion-controlled phenomena in Cu-based shape memory alloys. J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-016-5926-4.CrossRefGoogle Scholar
  6. 6.
    Velazquez D, Romero R. Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6584-x.CrossRefGoogle Scholar
  7. 7.
    Aydogdu Y, Kürüm F, Kök M, Yakinci ZD, Aydogdu A. Thermal properties, microstructure and microhardness of Cu–Al–Co shape memory alloy system. Trans Indian Inst Met. 2014.  https://doi.org/10.1007/s12666-013-0376-1.CrossRefGoogle Scholar
  8. 8.
    Roy D, Mahesh BV, Atwater MA, Chan TE, Scattergood RO, Koch CC. Grain size stability and hardness in nanocrystalline CuAlZr and CuAlY alloys. Mater Sci Eng, A. 2014.  https://doi.org/10.1016/j.msea.2013.11.075.CrossRefGoogle Scholar
  9. 9.
    Xu H. Cu-based high temperature shape memory alloys and their thermal stability. Mater Sci Forum. 2002;394:375–82.CrossRefGoogle Scholar
  10. 10.
    Brezina P. Heat treatment of complex aluminum bronzes. Int Met Rev. 1982;27(2):77–120.CrossRefGoogle Scholar
  11. 11.
    Haimann R, Krajczyk A. Effect of cobalt on transformations in heat-treated aluminium bronze. Met Technol. 1980.  https://doi.org/10.1179/030716980803286423.CrossRefGoogle Scholar
  12. 12.
    Bublei IR, Koval YN. Effect of alloying on the plasticity of martensitic transformation in Cu–Al alloys. Phys Met Metallogr. 2006;101(4):393–6.CrossRefGoogle Scholar
  13. 13.
    Bublei IP, Koval YN, Titov PV. Martensitic transformation in alloys of the Cu–Al–Co system. Metalloved Term Obrab Met. 2008;12:47–9.Google Scholar
  14. 14.
    Inoue A, Zhang W. Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater Trans. 2002;43(11):2921–5.CrossRefGoogle Scholar
  15. 15.
    McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P. Rietveld refinement guidelines. J Appl Crystallogr. 1999;32:36–50.CrossRefGoogle Scholar
  16. 16.
    Coelho AA, Evans J, Evans I, Kern A, Parsons S. The Topas symbolic computation system. Powder Diffr Suppl (Cambridge). 2011;26:S22–5.CrossRefGoogle Scholar
  17. 17.
    Joint Committee for Guides in Metrology. Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Guide, vol. JCGM 100:2, 2008.Google Scholar
  18. 18.
    Joint Committee for Guides in Metrology. Evaluation of measurement data—Supplement 1 to the ‘Guide to the expression of uncertainty in measurement’—Propagation of distributions using a Monte Carlo method. Guide, vol. JCGM 101:2, 2008.Google Scholar
  19. 19.
    Fernández M, Calderón JMA, Díez PMB. Implementation in MATLAB of the adaptive Monte Carlo method for the evaluation of measurement uncertainties. Accredit Qual Assur. 2009;14(2):95–106.CrossRefGoogle Scholar
  20. 20.
    Matula RA. Electrical resistivity of copper, gold, palladium, and silver. J Phys Chem Ref Data. 1979;8(4):1147–298.CrossRefGoogle Scholar
  21. 21.
    Kaye GWC, Laby TH. Tables of physical and chemical constants. 15th ed. London: Longamn; 1993.Google Scholar
  22. 22.
    Kano M. Supercooling and its thermal hysteresis of pure metal liquids. Netsu Sokutei. 1991;18(2):64–70.Google Scholar
  23. 23.
    Gaskell DR. Metallurgical thermodynamics. In: Cahn RW, Haasen P, editors. Physical metallurgy, vol. 1. Amsterdam: Elsevier; 1996. p. 413–69.CrossRefGoogle Scholar
  24. 24.
    Kimura Y, Kuriyama H, Suzuki T, Mishima Y. Microstructure control and mechanical properties of binary Co–Al alloys based on B2 intermetallic compound CoAl. Mater Trans, JIM. 1994;35(3):182–8.CrossRefGoogle Scholar
  25. 25.
    Silva RAG, Paganotti A, Gama S, Adorno AT, Carvalho TM, Santos CMA. Investigation of thermal, mechanical and magnetic behaviors of the Cu–11%Al alloy with Ag and Mn additions. Mater Charact. 2013;75:194–9.CrossRefGoogle Scholar
  26. 26.
    Murray JL. The aluminum–copper system. Int Met Rev. 1985;30(5):211–33.Google Scholar
  27. 27.
    Adorno AT, Guerreiro MR, Benedetti AV. Thermal behavior of Cu–Al alloys near the α-Cu–Al solubility limit. J Therm Anal Calorim. 2001;65:221–9.CrossRefGoogle Scholar
  28. 28.
    Lanzini F, Romero R, Stipcich M, Castro ML. Long-range ordering in β–Cu–Zn–Al: experimental and theoretical study. Phys Rev B. 2008.  https://doi.org/10.1103/PhysRevB.77.134207.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.ICAQF – Instituto de Ciências Químicas, Ambientais e FarmacêuticasUNIFESP - Universidade Federal de São PauloDiademaBrazil
  2. 2.Escola PolitécnicaUSP – Universidade de São PauloSão PauloBrazil

Personalised recommendations