Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 139, Issue 2, pp 1355–1365 | Cite as

The effects of coupled heat and mass transfer in the fractional Jeffrey fluid over inclined plane

  • Sami Ul HaqEmail author
  • Ehtisham Ul Haq
  • Muhammad Atif Khan
  • Ilyas Khan
Article
  • 19 Downloads

Abstract

The flow of fractional Jeffrey fluid due to time-dependent motion of plate has been investigated. An inclined plate is considered, and thermal effects with mass diffusivity in flow are also taken into account. The set of governing equations is operated by integral transform namely Laplace transform technique. Caputo–Fabrizio time-fractional derivative is considered in energy and diffusion equations. Moreover, exact analytical solutions are achieved. In the limiting cases, the general solutions for accelerating and oscillating motion of Jeffrey fluid are obtained. Effects of involved physical parameters, fractional parameter \(\alpha\), inclination of plate \(\theta\), Prandtl number Pr and Schmidt number Sc on the flow, are graphically detected.

Keywords

Fractional Jeffrey fluid Inclined plane Exact solutions Heat and mass transfer 

Notes

References

  1. 1.
    Ali F, Khan I, Shafie S. Conjugate effects of heat and mass transfer on MHD free convection flow over an inclined plate embedded in a porous medium. PloS ONE. 2013; e65223.Google Scholar
  2. 2.
    Hussain A, Ismail Z, Khan I, Hussein AG, Shafie S. Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating. EPJ Plus. 2014;3:129–46.Google Scholar
  3. 3.
    Das UN, Deka R, Soundalgekar VM. Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction. Forsch Ingenieurwes. 1994;60:284–7.CrossRefGoogle Scholar
  4. 4.
    Hussain A, Khan I, Shafie S. An exact analysis of heat and mass transfer past a vertical plate with Newtonian heating. J Appl Math. 2013;2013:9.Google Scholar
  5. 5.
    Khan I, Ali F, Shafie S. MHD free convection flow in a porous medium with thermal diffusion and ramped wall temperature. JPS. 2012;81:044401.Google Scholar
  6. 6.
    Khan M, Ali HS, Qi H. Exact solutions of starting flows for a fractional Burgers’ fluid between coaxial cylinders. Nonlinear Anal Real World Appl. 2009;10:1775–83.CrossRefGoogle Scholar
  7. 7.
    Vieru D, Fetecau C, Fetecau C, Nigar N. Magnetohydrodynamic natural convection flow with Newtonian heating and mass diffusion over an infinite plate that applies shear stress to a viscous fluid. ZNA. 2016;69:714–24.Google Scholar
  8. 8.
    Sheikholeslami M, Ganji DD, Javed YM, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nano fluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015;374:36–43.CrossRefGoogle Scholar
  9. 9.
    Ali F, Khan I, Shafie S, Musthapa N. Heat and mass transfer with free convection MHD flow past a vertical plate embedded in a porous medium. Math Probl Eng. 2013;2013:13.Google Scholar
  10. 10.
    Soundalgekar VM. Free convection effects on the Stokes problem for an infinite vertical plate. J Heat Transfer. 1997;99:499–501.CrossRefGoogle Scholar
  11. 11.
    Soundalgekar VM, Akolkar SP. Effects of free convection currents and mass transfer on flow past a vertical oscillating plate. Ap & SS. 1983;89:241–54.CrossRefGoogle Scholar
  12. 12.
    Haq SU, Ahmad S, Vieru D, Khan I, and Shafie S. Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature. PloS. 2014.  https://doi.org/10.1371/journal.pone.0088766.CrossRefGoogle Scholar
  13. 13.
    Fetecau C, Shah NA, Vieru D. General solutions for hydromagnetic free convection flow over an infinite plate with newtonian heating, mass diffusion and chemical reaction. CTP. 2017;68:768.Google Scholar
  14. 14.
    Butt AR, Abdullah M, Raza N, Imran MA. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo–Fabrizio time fractional derivatives. EPJ Plus. 2017;132:414.Google Scholar
  15. 15.
    Imran MA, Khan I, Ahmad M, Shah NA, Nazar M. Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives. J Mol Liq. 2017;229:67–75.CrossRefGoogle Scholar
  16. 16.
    Imran MA, Khan I, Ahmad M, Shah NA, Nazar M. Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives. J Mol Liq. 2017;229:67–75.CrossRefGoogle Scholar
  17. 17.
    Sheikh NA, Ali F, Saqib M, Khan I, Jan SAA. A comparative study of Atangana–Baleanu and Caputo–Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. EPJ Plus. 2017;132:54.Google Scholar
  18. 18.
    Ellahi R. Special issue on recent developments of nanofluids. Appl Sci. 2018;8:192.CrossRefGoogle Scholar
  19. 19.
    Vieru D, Fetecau C, Fetecau C. Time-fractional free convection flow near a vertical plate with Newtonian heating and mass diffusion. Thermal Sci. 2015;19:85–98.CrossRefGoogle Scholar
  20. 20.
    Ali NS, Khan I. Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives. EPJ C. 2016;76:362.Google Scholar
  21. 21.
    Abdullah M, Butt AR, Raza N, Alshomrani AS, Alzahrani AK. Analysis of blood flow with nanoparticles induced by uniform magnetic field through a circular cylinder with fractional Caputo derivatives. J Magn Magn Mater. 2018;446:28–36.CrossRefGoogle Scholar
  22. 22.
    Shahid N. A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate. SpringerPlus. 2015;4:640.CrossRefGoogle Scholar
  23. 23.
    Haq SU, Muhammad AK, Shah NA. Analysis of magnetohydrodynamic flow of a fractional viscous fluid through a porous medium. CJP. 2017.  https://doi.org/10.1016/j.cjph.2017.12.020.CrossRefGoogle Scholar
  24. 24.
    Khan I, Shah NA, Mahsud Y, Vieru D. Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo–Fabrizio derivatives. EPJ Plus. 2017;132:194.Google Scholar
  25. 25.
    Khan I, Shah NA, Mahsud Y, Vieru D. Heat transfer analysis in a maxwell fluid over an oscillating vertical plate using fractional Caputo–Fabrizio derivatives. Eur Phys J Plus. 2017;132(4):194.CrossRefGoogle Scholar
  26. 26.
    Zafar AA, Fetecau C. Flow over an infinite plate of a viscous fluid with non-integer order derivative without singular kernel. AEJ. 2016;55:2789–96.Google Scholar
  27. 27.
    Asjad MI, Shah NA, Aleem M, Khan I. Heat transfer analysis of fractional second-grade fluid subject to Newtonian heating with Caputo and Caputo–Fabrizio fractional derivatives: a comparison. EPJ Plus. 2017;132:340.Google Scholar
  28. 28.
    Shah NA, Zafar AA, Fetecau C. Free convection flows over a vertical plate that applies shear stress to a fractional viscous fluid. AEJ. 2017.  https://doi.org/10.1016/j.aej.2017.08.023.CrossRefGoogle Scholar
  29. 29.
    Mahsud Y, Shah NA, Vieru D. Influence of time-fractional derivatives on the boundary layer flow of Maxwell fluids. Chin J Phys. 2017;55:1340–51.CrossRefGoogle Scholar
  30. 30.
    Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl. 2015;1(2):1–3.Google Scholar
  31. 31.
    Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl. 2015;1(2):1–3.Google Scholar
  32. 32.
    Saqib M, Ali F, Khan I, Sheikh NA, Jan SAA. Exact solutions for free convection flow of generalized Jeffrey fluid: a Caputo–Fabrizio fractional model. AEJ 2017.  https://doi.org/10.1016/j.aej.2017.03.017.CrossRefGoogle Scholar
  33. 33.
    Abro KA, Chandio AD, Abro IA, Khan I. Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7302-z.CrossRefGoogle Scholar
  34. 34.
    Saqib M, Ali F, Khan I, Sheikh NA, Shafie SB. Convection in ethylene glycol-based molybdenum disulfide nanofluid. J Therm Anal and Calorim. 2018.  https://doi.org/10.1007/s10973-018-7054-9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of MathematicsIslamia College PeshawarPeshawarPakistan
  2. 2.Department of MathematicsKohat University of Science & TechnologyKohatPakistan
  3. 3.Department of Basic Sciences, College of EngineeringMajmaah UniversityMajmaahSaudi Arabia

Personalised recommendations