Advertisement

Pyrolysis of Ageratum conyzoides (goat weed)

Parametric influence on the product yield and product characterization

  • 59 Accesses

Abstract

A semi-batch reactor was used to carry out the pyrolysis of Ageratum conyzoides. The outcome of pyrolysis parameters vis temperature (350–600 °C); heating rate (25–100 °C min−1) and sweeping gas (N2) flow rate (0.1–0.5 L min−1) were observed on the product yield. The fixed particle size of 0.425 mm was maintained throughout the pyrolysis process. The maximum pyrolytic-oil yield of 37.55 mass% was achieved at a temperature of 525 °C under a constant heating rate and sweeping gas flow rate of 75 °C min−1 and 0.2 L min−1. Biomass, biochar, pyrolytic-oil and pyrolysis–gas were characterized through CHNS and O, FT-IR, TG and DTG, SEM–EDX, BET, XRD, 1H-NMR and GC–MS analysers. The A. conyzoides pyrolytic-oil and biochar has an empirical formula of CH1.32O0.82 and CH0.82O0.44 and a high heating value of 17.79 MJ kg−1 and 22.93 MJ kg−1. Presence of lower and higher hydrocarbon compounds in pyrolytic-oil makes it a suitable feedstock for the production of various chemicals. High alkalinity and carbonaceous nature of biochar make it suitable for the modification of soil or can be utilized as a solid fuel. The pyrolysis–gas has a gross calorific value of 5.32 MJ m−3 and can be utilized as an alternative gaseous energy source.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag. 2010;51:969–82.

  2. 2.

    Bridgwater AV, Grassi G. Biomass pyrolysis liquids upgrading and utilization. Berlin: Springer; 1991.

  3. 3.

    Rothman H. Synthetic fuels. Endeavour. 1986;10:1–216.

  4. 4.

    Raveendran K, Anuradda G, Kilhar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75:987–98.

  5. 5.

    Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T. Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol. 2017;237:57–63.

  6. 6.

    Liao R, Gao B, Fang J. Invasive plants as feedstock for biochar and bioenergy production. Bioresour Technol. 2013;140:439–42.

  7. 7.

    Kohli RK, Batish DR, Singh HP, Dogra KS. Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biol Invasions. 2006;8:1501–10.

  8. 8.

    Mooney HA, Cleland EE. The evolutionary impact of invasive species. Proc Natl Acad Sci. 2001;98:5446–51.

  9. 9.

    Masters RA, Sheley RL. Principles and practices for managing rangeland invasive plants. J Range Manag. 2001;54:502–17.

  10. 10.

    Kolb A, Alpert P, Enters D, Holzapfel C. Patterns of invasion within a grassland community. J Ecol. 2002;90:871–81.

  11. 11.

    Kohli RK, Jose S, Singh HP, Batish DR. Invasive plants and forest ecosystems. In: Kohli RK, Jose S, Singh HP, Batish DR, editors. Management. 1st ed. Boca Raton: CRC Press; 2008.

  12. 12.

    Holm LG, Plucknett DL, Pancho JV, Herberger JP. The world’ s worst weeds. Honolulu: University Press Hawaii; 1977.

  13. 13.

    Okunade AL. Ageratum conyzoides L. (Asteraceae). Fitoterapia. 2002;73:1–16.

  14. 14.

    Stapf O. The flora and fauna of British India. Nature. 1898;58:250–1.

  15. 15.

    Dogra KS, Kohli RK, Sood SK, Dobhal PK. Impact of Ageratum conyzoides L. on the diversity and composition of vegetation in the Shivalik hills of Himachal Pradesh (Northwestern Himalaya), India. Int J Biodivers Conserv. 2009;1:135–45.

  16. 16.

    Rawat GS, Goyal SP, Johnsingh AJT. Ecological observations on the grasslands of Corbett Tiger Reserve. India. Indian For. 1997;123:958–63.

  17. 17.

    Sit AK, Bhattacharya M, Sarkar B, Arunachalam V. Weed floristic composition in palm gardens in plains of eastern Himalayan region of West Bengal. Curr Sci. 2007;92:1434–9.

  18. 18.

    Rasingam L, Parthasarathy N. Diversity of understory plants in undisturbed and disturbed tropical lowland forests of Little Andaman Island, India. Biodivers Conserv. 2009;18:1045–65.

  19. 19.

    Negi PS, Hajra PK. Alien flora of Doon Valley, Northwest Himalaya. Curr Sci. 2007;92:968–78.

  20. 20.

    Harun MY, Dayang Radiah AB, Zainal Abidin Z, Yunus R. Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour Technol. 2011;102:5193–9.

  21. 21.

    Akhtar J, Saidina Amin N. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev. 2012;16:5101–9.

  22. 22.

    Varma AK, Mondal P. Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. J Therm Anal Calorim. 2017;131:2057–72.

  23. 23.

    Rout T, Pradhan D, Singh RK, Kumari N. Exhaustive study of products obtained from coconut shell pyrolysis. J Environ Chem Eng. 2016;4:3696–705.

  24. 24.

    Singh VK, Soni AB, Kumar S, Singh RK. Pyrolysis of sal seed to liquid product. Bioresour Technol. 2014;151:432–5.

  25. 25.

    Pradhan D, Singh RK, Bendu H, Mund R. Pyrolysis of Mahua seed (Madhuca indica)—production of biofuel and its characterization. Energy Convers Manag. 2016;108:529–38.

  26. 26.

    Varma AK, Mondal P. Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crops Prod. 2017;95:704–17.

  27. 27.

    Şensöz S, Demiral I, Gerçel HF. Olive bagasse (Olea europea L.) pyrolysis. Bioresour Technol. 2006;97:429–36.

  28. 28.

    Moralı U, Yavuzel N, Şensöz S. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and bio-char. Bioresour Technol. 2016;221:682–5.

  29. 29.

    Nayan NK, Kumar S, Singh RK. Production of the liquid fuel by thermal pyrolysis of neem seed. Fuel. 2013;103:437–43.

  30. 30.

    Bhattacharjee N, Biswas AB. Pyrolysis of Alternanthera philoxeroides (alligator weed): effect of pyrolysis parameter on product yield and characterization of liquid product and bio char. J Energy Inst. 2018;91:605–18.

  31. 31.

    Conti L, Scano G, Boufala J. Bio-oils from arid land plants: flash pyrolysis of Euphorbia characias bagasse. Biomass Bioenergy. 1994;7:291–6.

  32. 32.

    Liu WJ, Zeng FX, Jiang H, Yu HQ. Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Bioresour Technol. 2011;102:3471–9.

  33. 33.

    Kim SS, Agblevor FA. Thermogravimetric analysis and fast pyrolysis of milkweed. Bioresour Technol. 2014;169:367–73.

  34. 34.

    Asadullah M, Rahman MA, Ali MM, Rahman MS, Motin MA, Sultan MB, et al. Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel. 2007;86:2514–20.

  35. 35.

    Roddy DJ, Manson-Whitton C. Biomass gasification and pyrolysis. Compr Renew Energy. 2012;5:133–53.

  36. 36.

    Sudiro M, Bertucco A. Synthetic fuels by a limited CO2 emission process which uses both fossil and solar energy. Energy Fuels. 2007;21:3668–75.

  37. 37.

    Abdullah H, Mediaswanti KA, Wu H. Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy Fuels. 2010;24:1972–9.

  38. 38.

    Sun S, Tian H, Zhao Y, Sun R, Zhou H. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresour Technol. 2010;101:3678–84.

  39. 39.

    Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrol. 2013;99:170–7.

  40. 40.

    Li K, Zhang L, Zhu L, Zhu X. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresour Technol. 2017;234:48–52.

  41. 41.

    Balat M. Mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis. Energy Sources A Recover Util Environ Eff. 2008;30:620–35.

  42. 42.

    Newalkar G, Iisa K, D’Amico AD, Sievers C, Agrawal P. Effect of temperature, pressure, and residence time on pyrolysis of pine in an entrained flow reactor. Energy Fuels. 2014;28:5144–57.

  43. 43.

    Zhou L, Yang H, Wu H, Wang M, Cheng D. Catalytic pyrolysis of rice husk by mixing with zinc oxide: characterization of bio-oil and its rheological behavior. Fuel Process Technol. 2013;106:385–91.

  44. 44.

    Xu B, Li A. Effect of high-pressure on pine sawdust pyrolysis: products distribution and characteristics. AIP Conf Proc. 2017;1864:1–7.

  45. 45.

    Yorgun S, Şensöz S, Koçkar ÖM. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass Bioenergy. 2001;20:141–8.

  46. 46.

    Uzun BB, Pütün AE, Pütün E. Fast pyrolysis of soybean cake: product yields and compositions. Bioresour Technol. 2006;97:569–76.

  47. 47.

    Sensoz S, Angın D. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: part 1. The effects of pyrolysis parameters on the product yields. Bioresour Technol. 2008;99:5492–7.

  48. 48.

    Aboulkas A, El Harfi K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen. J Fuel Chem Technol. 2010;37:659–67.

  49. 49.

    AçIkalIn K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.

  50. 50.

    El Harfi K, Mokhlisse A, Chanâa MB. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. J Anal Appl Pyrol. 1999;48:65–76.

  51. 51.

    Balagurumurthy B, Srivastava V, Vinit Kumar J, Biswas B, Singh R, et al. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments. Bioresour Technol. 2015;188:273–9.

  52. 52.

    Ly HV, Kim SS, Choi JH, Woo HC, Kim J. Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production. Energy Convers Manag. 2016;122:526–34.

  53. 53.

    Azargohar R, Jacobson KL, Powell EE, Dalai AK. Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. J Anal Appl Pyrol. 2013;104:330–40.

  54. 54.

    Abnisa F, Arami-Niya A, Wan Daud WMA, Sahu JN, Noor IM. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag. 2013;76:1073–82.

  55. 55.

    Jacobson K, Maheria KC, Dalai AK. Bio-oil valorization: a review. Renew Sustain Energy Rev. 2013;23:91–106.

  56. 56.

    Miranda R, Bustos-Martinez D, Blanco CS, Villarreal MHG, Cantú MER. Pyrolysis of sweet orange (Citrus sinensis) dry peel. J Anal Appl Pyrol. 2009;86:245–51.

  57. 57.

    Nurul Islam M, Zailani R, Nasir Ani F. Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and its characterisation. Renew Energy. 1999;17:73–84.

  58. 58.

    Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrol. 2006;76:230–7.

  59. 59.

    Lee MK, Tsai WT, Tsai YL, Lin SH. Pyrolysis of napier grass in an induction-heating reactor. J Anal Appl Pyrol. 2010;88:110–6.

  60. 60.

    Hoffmann J, Jensen CU, Rosendahl LA. Co-processing potential of HTL bio-crude at petroleum refineries—part 1: fractional distillation and characterization. Fuel. 2016;65:526–35.

  61. 61.

    Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

  62. 62.

    Sun P, Heng M, Sun SH, Chen J. Analysis of liquid and solid products from liquefaction of paulownia in hot-compressed water. Energy Convers Manag. 2011;52:924–33.

  63. 63.

    Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–89.

  64. 64.

    Speight JG. Gasification of Unconventional Feedstocks, 1st ed. Laramie, Wyoming: Gulf Professional Publishing, Gasif. Unconv. Feed. CD & W Inc.; 2014.

  65. 65.

    Sutcu H, Toroglu I, Piskin S. Structural characterization of oil component of high temperature pyrolysis tars. Energy Sources. 2005;27:521–34.

  66. 66.

    Bordoloi N, Narzari R, Chutia RS, Bhaskar T, Kataki R. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour Technol. 2015;178:83–9.

  67. 67.

    Saikia R, Chutia RS, Kataki R, Pant KK. Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour Technol. 2015;188:265–72.

  68. 68.

    Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, et al. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresour Technol. 2013;148:196–201.

  69. 69.

    Yakub MI, Abdalla AY, Feroz KK, Suzana Y. Pyrolysis of oil palm residues in a fixed bed tubular reactor. J Power Energy Eng. 2015;3:185–93.

  70. 70.

    Kim P, Johnson A, Edmunds CW, Radosevich M, Vogt F, Rials TG, et al. Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels. 2011;25:4693–703.

  71. 71.

    Cetin E, Moghtaderi B, Gupta R, Wall TF. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel. 2004;83:2139–50.

  72. 72.

    Hu S, Xiang J, Sun L, Xu M, Qiu J, Fu P. Characterization of char from rapid pyrolysis of rice husk. Fuel Process Technol. 2008;89:1096–105.

Download references

Author information

Correspondence to Asit Baran Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, N., Biswas, A.B. Pyrolysis of Ageratum conyzoides (goat weed). J Therm Anal Calorim 139, 1515–1536 (2020). https://doi.org/10.1007/s10973-019-08437-9

Download citation

Keywords

  • Ageratum conyzoides (goat weed) biomass
  • Pyrolytic-oil
  • Pyrolysis–gas and biochar