Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3619–3633 | Cite as

Thermal behavior of asphalt binder with modifying agents from industrial residues

  • Denes Carlos Santos da GraçaEmail author
  • Gisélia Cardoso
  • Cheila Gonçalves Mothé
Article

Abstract

The thermal behavior of the petroleum asphalt binder (PA 50–70) modified with mixture of rubber tires and oily sludge, in the proportions of 15/85% m/m (M1) and 85/15% m/m (M2), was evaluated. For this purpose, M1 and M2 were added to PA 50–70, at concentrations of 10% and 20% m/m with and without 1% m/m of cashew nut shell liquid (CNSL). Results from thermogravimetric analysis (TG/DTG) of the PA 50–70 revealed initial degradation temperature at 290 °C, while with M1, without and with 1% CNSL the temperature was 270 °C and 240 °C at 10% addition, and 194 °C and 240 °C at 20% addition, respectively, and modified with M2, 270 °C and 247 °C, for 10% addition, and 230 °C and 247 °C, for 20% addition, respectively. All these temperatures of degradation were higher than the temperature (160 ± 5 °C) of processing asphalt mixtures. The differential scanning calorimetry (DSC) results showed the occurrence of melting of crystalline fractions only for those modified with the M1 mixture. Results of absorption spectroscopy in the Fourier transform infrared (FTIR) region revealed the existence of chemical interaction between the components of the mixture and PA 50–70 supported by the antioxidant action of CNSL. The evaluation of the thermal susceptibility by flow activation energy (Ef), at a temperature of 160 ± 5 °C of the modified binders without and with 1% of CNSL, showed a reduction of 25% in relation to the PA 50–70, signaling a need for lower energy consumption when it is used in the process of obtaining asphalt mix for road pavement.

Keywords

Modified asphalt binder Oily sludge Industrial residue Thermal analysis Cashew nut shell liquid 

Notes

Acknowledgements

The authors are grateful to EMURB-Aracaju/SE, Brazil, for supplying the asphalt PA 50–70, to Petrobras for the oily sludge, to the Laboratory of Thermal Analysis, coordinated by Prof. Ivo Giolito of Federal University of Rio de Janeiro (UFRJ) for the accomplishment of the research data and to the Graduate Program in Chemical and Biochemical Processes (EPQB/UFRJ) for the opportunity of conducting this research.

References

  1. 1.
    Tuncan M, Tuncan A, Cetin A. The use of waste materials in asphalt concrete mixtures. Waste Manag Res. 2003;21:83–92.PubMedGoogle Scholar
  2. 2.
    Maldhure AV, Chaudhari AR, Ekhe JD. Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. J Therm Anal Calorim. 2011;103:625–32.Google Scholar
  3. 3.
    Mohamed IM, Block G, Abou-Sayed O, Abou-Sayed AS. Industrial waste injection feasibility in North Dakota. J Pet Sci Eng. 2017;159:267–78.Google Scholar
  4. 4.
    Thambiraj S, Shankaran DR. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl Surf Sci. 2017;412:405–16.Google Scholar
  5. 5.
    Yuping W, Cheng F, Hou G, Sun S. Amphiphilic cellulose: surface activity and aqueous self-assembly into nano-sized polymeric micelles. React Funct Polym. 2008;68:981–9.Google Scholar
  6. 6.
    Hasan MRM, You Z, Yang X, Heiden PA. Quantification of physicochemical properties, activation energy, and temperature susceptibility of foamed asphalt binders. Constr Build Mater. 2017;153:557–68.Google Scholar
  7. 7.
    Sun M, Zheng M, Qu G, Yuan K, Bi Y, Wang J. Performance of polyurethane modified asphalt and its mixtures. Constr Build Mater. 2018;191:386–97.Google Scholar
  8. 8.
    Bringel RM, Alencar AEV, Soares JB, Soares SA, Nascimento DR, Costa EF. Thermo-rheological behavior of modified bitumens adding virgin and waste polymers. 2008. https://www.researchgate.net/publication/261063347. Accessed Aug 2018.
  9. 9.
    Ren S, Liang M, Fan W, Zhang Y, Qian C, He Y, Shi J. Investigating the effects of SBR on the properties of gilsonite modified asphalt. Constr Build Mater. 2018;190:1103–16.Google Scholar
  10. 10.
    Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater. 2013;261:470–90.PubMedGoogle Scholar
  11. 11.
    Jasmine J, Mukherji S. Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia. J Environ Mana. 2015;149(1):118–25.Google Scholar
  12. 12.
    Wang R, Zhao Z, Qianqian Y, Xiang Y, Wang Z. Additive adsorption behavior of sludge and its influence on the slurrying ability of coal–sludge–slurry and petroleum coke-sludge-slurry. Appl Therm Eng. 2018;128:1555–64.Google Scholar
  13. 13.
    Liu H, Chen Z, Wang W, Wang H, Hao P. Investigation of the rheological modification mechanism of crumb rubber modified asphalt (CRMA) containing TOR additive. Constr Build Mater. 2014;67:225–33.Google Scholar
  14. 14.
    Yu H, Leng L, Gao Z. Thermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additives. Constr Build Mater. 2016;125:168–74.Google Scholar
  15. 15.
    Zhang F, Hu C. The research for crumb rubber/waste plastic compound modified asphalt. J Therm Anal Calorim. 2016;124:729–41.Google Scholar
  16. 16.
    Xiang L, Cheng J, Kang S. Thermal oxidative aging mechanism of crumb rubber/SBS composite modified asphalt. Constr Build Mater. 2015;75:169–75.Google Scholar
  17. 17.
    Liu H, Chen Z, Wang W, Wang H, Hao P. Investigation of the rheological modification mechanism of crumb rubber modified asphalt (CRMA) containing TOR additive. Constr Build Mater. 2014;67:225–33.Google Scholar
  18. 18.
    Rasool RT, Song P, Wang S. Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber. Constr Build Mater. 2018;182:134–43.Google Scholar
  19. 19.
    Rodrigues FHA, Feitosa JPA, Ricardo NMPS, França FCF, Carioca JOB. Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1,4-polyisoprene. J Braz Chem Soc. 2006;17(2):265–71.Google Scholar
  20. 20.
    Bastos FA, Tubino M. The use of the liquid from cashew nut shells as an antioxidant in biodiesel. J Braz Chem Soc. 2017;28(5):747–55.Google Scholar
  21. 21.
    Das P, Sreelatha T, Ganesh A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. Biomass Bioenergy. 2004;27:265–75.Google Scholar
  22. 22.
    Oliveira AH, Castelo Branco VTF, Soares SA. Evaluation of the cashew nut shell liquid (CNSL) antioxidant characteristics for asphaltic materials using different aging procedures. 2016;  https://doi.org/10.14311/EE.2016.300.
  23. 23.
    Zhang F, Hu C, Zhuang W. The research for low-temperature rheological properties and structural characteristics of high-viscosity modified asphalt. J Therm Anal Calorim. 2018;131:1025–34.Google Scholar
  24. 24.
    Elkashef M, Williams RC, Cochran E. Thermal stability and evolved gas analysis of rejuvenated reclaimed asphalt pavement (RAP) bitumen using thermogravimetric analysis-Fourier transform infrared (TG–FTIR). J Therm Anal Calorim. 2018;131:865–71.Google Scholar
  25. 25.
    Tang P, Mo L, Pan C, Fang H, Javilla B, Riara M. Investigation of rheological properties of light colored synthetic asphalt binders containing different polymer modifiers. Constr Build Mater. 2018;161:175–85.Google Scholar
  26. 26.
    Cao X, Wang H, Cao X, Sun W, Zhu H, Tang B. Investigation of rheological and chemical properties asphalt binder rejuvenated with waste vegetable oil. Constr Build Mater. 2018;180:455–63.Google Scholar
  27. 27.
    Navarro FM, Sánchez MS, Gámiz F, Gámez MCR. Mechanical and thermal properties of graphene modified asphalt binders. Const Build Mater. 2018;180(20):265–74.Google Scholar
  28. 28.
    Zhang F, Hu C. Influence of aging on thermal behaviour and characterization of SBR compound-modified asphalt. J Therm Anal Calorim. 2014;115:1211–8.Google Scholar
  29. 29.
    Zhang F, Hu C. The research for thermal behaviour, creep properties and morphology of SBS-modified asphalt. J Therm Anal Calorim. 2015;121:651–61.Google Scholar
  30. 30.
    Mothé CG, Azevedo AD. Análise Térmica de Materiais. Artliber Editora: São Paulo SP; 2009. p. 324.Google Scholar
  31. 31.
    Wagner M. Thermal analysis in practice., Collected applications. HandbookSchwerzenbach: Mettler Toledo; 2009.Google Scholar
  32. 32.
    Mothé MG, Leite LFM, Mothé CG. Thermal characterization of asphalt mixtures by TG/DTG, DTA and FTIR. J Therm Anal Calorim. 2008;93(1):105–9.Google Scholar
  33. 33.
    Wen G, Zhang Y, Zhang Y, Sun K, Fan Y. Rheological characterization of storage-stable SBS-modified asphalts. Polym Test. 2002;21:295–302.Google Scholar
  34. 34.
    Cong P, Wang J, Li K, Chen S. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel. 2012;97:678–84.Google Scholar
  35. 35.
    Cong P, Xun P, Xing M, Chen S. Investigation of asphalt binder containing various crumb rubbers and asphalts. Constr Build Mater. 2013;40:632–41.Google Scholar
  36. 36.
    Hofko B, Porot L, Falchetto CA, Poulikakos L, Huber L, Lu X, Mollenhauer K, Grothe H. FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Mater Struct. 2018;51:45.Google Scholar
  37. 37.
    da Graça DCS, Cavalcante EH, Cardoso G. Avaliação da estabilidade de estocagem de ligante asfáltico modificado com blenda de borra oleosa de petróleo e borracha de pneus. Sci Plena. 2015.  https://doi.org/10.14808/sci.plena.2015.113310.CrossRefGoogle Scholar
  38. 38.
    da Graça DCS, Cavalcante EH, Cardoso G. Dosagem de mistura asfáltica com CAP 50/70 modificado com borra de petróleo. Sci Plena. 2016.  https://doi.org/10.14808/sci.plena.2016.054213.CrossRefGoogle Scholar
  39. 39.
    Santana RR, Santos R, Cavalcante EH, Cardoso G. Stability and adhesiveness of modified asphalt binder with oil sludge blend and tire rubber. Rev Mater. 2018.  https://doi.org/10.1590/S1517-707620170001.0313.CrossRefGoogle Scholar
  40. 40.
    Bouvier JM, Clin F. Commission des Communautés Européennes—Pyrolysis of rubbers and tyres wastes. 1985. http://infoterre.brgm.fr/rapports/85-DAM-029-MIN.pdf. Accessed Apr 2018.
  41. 41.
    Scuracchio CH, Waki DA, Silva MLCP. Thermal analysis of ground tire rubber devulcanized by microwaves. J Therm Anal Calorim. 2007;87(3):893–7.Google Scholar
  42. 42.
    Zhang F, Hu C. The research for structural characteristics and modification mechanism of crumb rubber compound modified asphalts. Constr Build Mater. 2015;76:330–42.Google Scholar
  43. 43.
    Bhunia HP, Nando GB, Chaki TK, Basak A, Lenka S, Nayak PL. Synthesis and characterization of polymers from cashew nut shell liquid (CNSL), a renewable resource II. Synthesis of polyurethanes. Eur Polym J. 1999;35:1381–91.Google Scholar
  44. 44.
    Masson JF, Pelletier L, Collins P. Rapid FTIR Method for quantification of styrene-butadiene type copolymers in bitumen. J Appl Polym Sci. 2001;79:1034–41.Google Scholar
  45. 45.
    Benes M, Milanov N, Matuschek G, Kettrup A, Placek V, Balek V. Thermal degradation of PVC cable insulation studied by simultaneous TG-FTIR and TG-EGA methods. J Therm Calorim. 2004;78:621–30.Google Scholar
  46. 46.
    Lamontagne J, Dumas P, Mouillet V, Kister J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens. Fuel. 2001;80:483–8.Google Scholar
  47. 47.
    Elkashef M, Williams RC, Cochran E. Thermal stability and evolved gas analysis of rejuvenated reclaimed asphalt pavement (RAP) bitumen using thermogravimetric analysis—Fourier transform infrared (TG–FTIR). J Therm Anal Calorim. 2017;20:17.  https://doi.org/10.1007/s10973-017-6674-9.CrossRefGoogle Scholar
  48. 48.
    Wang Y, Zhang P, Wen K, Su X, Zhu J, Hongping H. A new insight into the compositional and structural control of porous clay hetero structures from the perspective of NMR and TEM. Microporous Mesoporous Mater. 2016;224:285–93.Google Scholar
  49. 49.
    Hui Y, Qingli D, Zhanping Y. Fourier transform infrared spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr Build Mater. 2015;101:1078–87.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos, Escola de QuímicaUniversidade Federal do Rio de JaneiroRio De JaneiroBrazil
  2. 2.Laboratório de Desenvolvimento e Caracterização de Materiais, Departamento de Engenharia QuímicaUniversidade Federal de SergipeSão CristóvãoBrazil

Personalised recommendations