Advertisement

Thermal behavior of perlite concrete used in a sodium-cooled fast reactor

Multistep reaction kinetics and melting for safety assessment
  • Nobuyoshi KogaEmail author
  • Shin Kikuchi
Article
  • 23 Downloads

Abstract

In this study, the thermal behavior of the perlite concrete used in a sodium-cooled fast reactor was investigated for obtaining information on a plant simulation system for safety assessment. The thermal stability and kinetic behavior of multistep thermally induced processes of perlite concrete were examined using thermoanalytical techniques and other complementary methods. The partially overlapping thermal decomposition process comprising seven reaction steps was characterized by kinetic deconvolution analysis based on a cumulative kinetic equation by determining the contribution and all kinetic parameters for each component reaction step. The thermal decomposition product was a mixture of amorphous and crystalline phases located in a CaO-rich region in the SiO2–CaO phase diagram. The softening or melting of the decomposition product was initiated at approximately 1520 K. The significance and reliability of the results obtained were discussed on the premise of their practical uses for the safety assessment.

Keywords

Thermal analysis Thermal decomposition Portland cement Concrete Kinetic deconvolution analysis 

Notes

Acknowledgements

This work was supported by a study of “Research and Development of Multi-Level and Multi-Scenario Plant Simulation Systems for Innovative Sodium-Cooled Fast Reactor” entrusted to “Japan Atomic Energy Agency (JAEA)” by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). S. Kikuchi is deeply grateful to Mr. T. Yonemichi (Tokokikai Co.) for his assistance in many thermal analysis experiments and data processing.

Supplementary material

10973_2019_8351_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1687 kb)

References

  1. 1.
    Kikuchi S, Koga N, Seino H, Ohno S. Kinetic study on liquid sodium–silica reaction for safety assessment of sodium-cooled fast reactor. J Therm Anal Calorim. 2015;121(1):45–55.  https://doi.org/10.1007/s10973-014-4387-x.CrossRefGoogle Scholar
  2. 2.
    Kikuchi S, Koga N, Seino H, Ohno S. Experimental study and kinetic analysis on sodium oxide–silica reaction. J Nucl Sci Technol. 2016;53(5):682–91.  https://doi.org/10.1080/00223131.2015.1121843.CrossRefGoogle Scholar
  3. 3.
    Kikuchi S, Koga N. Thermal behavior of sodium hydroxide–structural concrete composition of sodium-cooled fast reactor. J Therm Anal Calorim. 2018;131(1):301–8.  https://doi.org/10.1007/s10973-017-6236-1.CrossRefGoogle Scholar
  4. 4.
    Sha W, O’Neill EA, Guo Z. Differential scanning calorimetry study of ordinary Portland cement. Cem Concr Res. 1999;29(9):1487–9.  https://doi.org/10.1016/s0008-8846(99)00128-3.CrossRefGoogle Scholar
  5. 5.
    Shaw S, Henderson CMB, Komanschek BU. Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chem Geol. 2000;167(1–2):141–59.  https://doi.org/10.1016/s0009-2541(99)00206-5.CrossRefGoogle Scholar
  6. 6.
    Zelic J, Rusic D, Krstulovic R. Kinetic analysis of thermal decomposition of Ca(OH)(2) formed during hydration of commercial Portland cement by DSC. J Therm Anal Calorim. 2002;67(3):613–22.  https://doi.org/10.1023/A:1014348603686.CrossRefGoogle Scholar
  7. 7.
    Handoo SK, Agarwal S, Agarwal SK. Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cem Concr Res. 2002;32(7):1009–18.  https://doi.org/10.1016/s0008-8846(01)00736-0.CrossRefGoogle Scholar
  8. 8.
    Alonso C, Fernandez L. Dehydration and rehydration processes of cement paste exposed to high temperature environments. J Mater Sci. 2004;39(9):3015–24.  https://doi.org/10.1023/B:Jmsc.0000025827.65956.18.CrossRefGoogle Scholar
  9. 9.
    Alarcon-Ruiz L, Platret G, Massieu E, Ehrlacher A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem Concr Res. 2005;35(3):609–13.  https://doi.org/10.1016/j.cemconres.2004.06.015.CrossRefGoogle Scholar
  10. 10.
    Gabrovšek R, Vuk T, Kaučič V. Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chim Slov. 2006;53:159–65.Google Scholar
  11. 11.
    Garbev K, Bornefeld M, Beuchle G, Stemmermann P. Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 2: X-ray and thermogravimetry study. J Am Ceram Soc. 2008;91(9):3015–23.  https://doi.org/10.1111/j.1551-2916.2008.02601.x.CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Ye G. Dehydration kinetics of Portland cement paste at high temperature. J Therm Anal Calorim. 2012;110(1):153–8.  https://doi.org/10.1007/s10973-012-2303-9.CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Ye G. Quantitative analysis of phase transition of heated Portland cement paste. J Therm Anal Calorim. 2012;112(2):629–36.  https://doi.org/10.1007/s10973-012-2600-3.CrossRefGoogle Scholar
  14. 14.
    Dambrauskas T, Baltakys K, Eisinas A, Siauciunas R. A study on the thermal stability of kilchoanite synthesized under hydrothermal conditions. J Therm Anal Calorim. 2016;127(1):229–38.  https://doi.org/10.1007/s10973-016-5424-8.CrossRefGoogle Scholar
  15. 15.
    Tajuelo Rodriguez E, Garbev K, Merz D, Black L, Richardson IG. Thermal stability of C–S–H phases and applicability of Richardson and Groves’ and Richardson C–(A)–S–H(I) models to synthetic C–S–H. Cem Concr Res. 2017;93:45–56.  https://doi.org/10.1016/j.cemconres.2016.12.005.CrossRefGoogle Scholar
  16. 16.
    Zhang R, Panesar DK. Investigation on Mg content in calcite when magnesium calcite and nesquehonite co-precipitate in hardened cement paste. Thermochim Acta. 2017;654:203–15.  https://doi.org/10.1016/j.tca.2017.04.005.CrossRefGoogle Scholar
  17. 17.
    Bhatty JI. A review of the application of thermal analysis to cement-admixture systems. Thermochim Acta. 1991;189(2):313–50.  https://doi.org/10.1016/0040-6031(91)87128-j.CrossRefGoogle Scholar
  18. 18.
    Koga N. Physico-geometric approach to the kinetics of overlapping solid-state reactions. In: Vyazovkin S, Koga N, Schick C, editors. Handbook of thermal analysis and calorimetry. 2nd ed. Amsterdam: Elsevier; 2018. p. 213–51.  https://doi.org/10.1016/b978-0-444-64062-8.00012-7.Google Scholar
  19. 19.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.  https://doi.org/10.1021/ac60131a045.CrossRefGoogle Scholar
  20. 20.
    Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74.  https://doi.org/10.1007/s10973-012-2500-6.CrossRefGoogle Scholar
  21. 21.
    Pluth JJ, Smith JV. The crystal structure of scawtite, Ca7(Si6O18)(CO3) 2H2O. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1973;29(1):73–80.  https://doi.org/10.1107/s0567740873002001.CrossRefGoogle Scholar
  22. 22.
    Grice JD. The Structure of Spurrite, Tilleyite and scawtite, and relationships to other silicate carbonate minerals. Can Miner. 2005;43(5):1489–500.  https://doi.org/10.2113/gscanmin.43.5.1489.CrossRefGoogle Scholar
  23. 23.
    Glasser FP. The formation and thermal stability of spurrite, Ca5(SiO4)2CO3. Cem Concr Res. 1973;3(1):23–8.  https://doi.org/10.1016/0008-8846(73)90058-6.CrossRefGoogle Scholar
  24. 24.
    Yamnova NA, Zubkova NV, Eremin NN, Zadov AE, Gazeev VM. Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallogr Rep. 2011;56(2):210–20.  https://doi.org/10.1134/s1063774511020209.CrossRefGoogle Scholar
  25. 25.
    Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, et al. FactSage thermochemical software and databases—recent developments. Calphad. 2009;33(2):295–311.  https://doi.org/10.1016/j.calphad.2008.09.009.CrossRefGoogle Scholar
  26. 26.
    Koga N, Šesták J, Simon P. Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis. In: Šesták J, Simon P, editors. Thermal analysis of micro, nano- and non-crystalline materials. Berlin: Springer; 2013. p. 1–28.  https://doi.org/10.1007/978-90-481-3150-1_1.Google Scholar
  27. 27.
    Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113(3):1527–41.  https://doi.org/10.1007/s10973-012-2882-5.CrossRefGoogle Scholar
  28. 28.
    Friedman HL. Kinetics of thermal degradation of cha-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.  https://doi.org/10.1002/polc.5070060121.CrossRefGoogle Scholar
  29. 29.
    Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91.  https://doi.org/10.1021/jp110895z.CrossRefGoogle Scholar
  30. 30.
    Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111(2):1045–56.  https://doi.org/10.1007/s10973-012-2445-9.CrossRefGoogle Scholar
  31. 31.
    Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.  https://doi.org/10.1016/0040-6031(92)85118-f.CrossRefGoogle Scholar
  32. 32.
    Koga N. Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim Acta. 1995;258:145–59.  https://doi.org/10.1016/0040-6031(95)02249-2.CrossRefGoogle Scholar
  33. 33.
    Gotor FJ, Criado JM, Málek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82.  https://doi.org/10.1021/jp0022205.CrossRefGoogle Scholar
  34. 34.
    Criado JM, Pérez-Maqueda LA, Gotor FJ, Málek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72(3):901–6.  https://doi.org/10.1023/a:1025078501323.CrossRefGoogle Scholar
  35. 35.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.  https://doi.org/10.1246/bcsj.38.1881.CrossRefGoogle Scholar
  36. 36.
    Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100(1):109–18.  https://doi.org/10.1016/0040-6031(86)87053-8.CrossRefGoogle Scholar
  37. 37.
    Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.  https://doi.org/10.1016/0040-6031(71)85051-7.CrossRefGoogle Scholar
  38. 38.
    Šesták J. Diagnostic limits of phenomenological kinetic models introducing the accommodation function. J Therm Anal. 1990;36(6):1997–2007.  https://doi.org/10.1007/bf01914116.CrossRefGoogle Scholar
  39. 39.
    Šesták J. Rationale and fallacy of thermoanalytical kinetic patterns. J Therm Anal Calorim. 2011;110(1):5–16.  https://doi.org/10.1007/s10973-011-2089-1.Google Scholar
  40. 40.
    Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51(17):3998–4007.  https://doi.org/10.1016/j.polymer.2010.06.020.CrossRefGoogle Scholar
  41. 41.
    Koga N, Málek J. Accommodation of the actual solid-state process in the kinetic model function 2. Applicability of the empirical kinetic model function to diffusion-controlled reactions. Thermochim Acta. 1996;283:69–80.CrossRefGoogle Scholar
  42. 42.
    Avrami M. Kinetics of phase change I—general theory. J Chem Phys. 1939;7(12):1103–12.  https://doi.org/10.1063/1.1750380.CrossRefGoogle Scholar
  43. 43.
    Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–23.  https://doi.org/10.1063/1.1750631.CrossRefGoogle Scholar
  44. 44.
    Avrami M. Granulation, kinetics of phase change. III. Phase change, and microstructure. J Chem Phys. 1941;9(2):177–84.  https://doi.org/10.1063/1.1750872.CrossRefGoogle Scholar
  45. 45.
    Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–58.Google Scholar
  46. 46.
    Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488–97.  https://doi.org/10.1039/Tf9444000488.CrossRefGoogle Scholar
  47. 47.
    Koga N, Criado JM. Influence of the particle size distribution on the CRTA curves for the solid-state reactions of interface shrinkage. J Therm Anal. 1997;49(3):1477–84.  https://doi.org/10.1007/bf01983706.CrossRefGoogle Scholar
  48. 48.
    Koga N, Criado JM. Kinetic analyses of solid-state reactions with a particle-size distribution. J Am Ceram Soc. 1998;81(11):2901–9.  https://doi.org/10.1111/j.1151-2916.CrossRefGoogle Scholar
  49. 49.
    Mampel KL. Time conversion formulas for heterogeneous reactions at the phase boundaries of solid bodies, I: the development of the mathematical method and the derivation of area conversion formulas. Z Phys Chem A. 1940;187:43–57.Google Scholar
  50. 50.
    Favergeon L, Pijolat M, Soustelle M. Surface nucleation and anisotropic growth models for solid-state reactions. Thermochim Acta. 2017;654:18–27.  https://doi.org/10.1016/j.tca.2017.05.004.CrossRefGoogle Scholar
  51. 51.
    Ogasawara H, Koga N. Kinetic modeling for thermal dehydration of ferrous oxalate dihydrate polymorphs: a combined model for induction period-surface reaction-phase boundary reaction. J Phys Chem A. 2014;118(13):2401–12.  https://doi.org/10.1021/jp500619q.CrossRefGoogle Scholar
  52. 52.
    Koga N, Criado JM. The influence of mass transfer phenomena on the kinetic analysis for the thermal decomposition of calcium carbonate by constant rate thermal analysis (CRTA) under vacuum. Int J Chem Kinet. 1998;30(10):737–44.  https://doi.org/10.1002/(sici)1097-4601(1998)30:10%3c737:aid-kin6%3e3.0.co;2-w.CrossRefGoogle Scholar
  53. 53.
    Tsuboi Y, Koga N. Thermal decomposition of biomineralized calcium carbonate: correlation between the thermal behavior and structural characteristics of avian eggshell. ACS Sustain Chem Eng. 2018;6(4):5283–95.  https://doi.org/10.1021/acssuschemeng.7b04943.CrossRefGoogle Scholar
  54. 54.
    Koga N, Tanaka H. A kinetic compensation effect established for the thermal-decomposition of a solid. J Therm Anal. 1991;37(2):347–63.  https://doi.org/10.1007/Bf02055937.CrossRefGoogle Scholar
  55. 55.
    Koga N, Šesták J. Further aspects of the kinetic compensation effect. J Therm Anal. 1991;37(5):1103–8.  https://doi.org/10.1007/Bf01932804.CrossRefGoogle Scholar
  56. 56.
    Koga N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta. 1994;244(1):1–20.  https://doi.org/10.1016/0040-6031(94)80202-5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Graduate School of EducationHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Fast Reactor Cycle System Research and Development CenterJapan Atomic Energy AgencyHigashi-IbarakiJapan

Personalised recommendations