Advertisement

Investigations in the recrystallization of evolved gases from pyrolysis process of melamine

  • Qian Huang
  • Kai Wei
  • Hongde Xia
Article
  • 3 Downloads

Abstract

A complete analysis of the thermal process about melamine was presented, in which different methods were applied to determine the characteristic of the two stages of decomposition and the recrystallization of evolved gases. Thermogravimetry and mass spectrometry were applied to analyze the first decomposition step at 140 ºC qualitatively and quantitatively by using a novel method of equivalent characteristic spectrum analysis (ECSA). With the skimmer interface coupling system, the recrystallization phenomenon of melamine was observed in the exhaust port after sampling interface. With the study of heated melamine, formation mechanism of recrystallization was confirmed and also its single-crystal structure and micro-morphology were obtained.

Keywords

Melamine Thermal Analysis Evolved gas Equivalent characteristic spectrum analysis (ECSA) 

Notes

References

  1. 1.
    Muller P, Schartel B. Melamine poly(metal phosphate) as flame retardant in epoxy resin: performance, modes of action, and synergy. J Appl Polym Sci. 2016;133:43549.CrossRefGoogle Scholar
  2. 2.
    Hatamie A, Marahel F, Sharifat A. Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta. 2018;176:518–25.CrossRefGoogle Scholar
  3. 3.
    Nowak M, Cichy B, Kużdżał E. Kinetics of melamine phosphate thermal decomposition in DSC studies. J Therm Anal Calorim. 2016;126:277–85.CrossRefGoogle Scholar
  4. 4.
    Huichun J, Weicheng L, Min H. Analysis of kinetics of thermal decomposition of melamine blended with phosphorous ionic liquid by green approach. J Therm Anal Calorim. 2018;131:2821–31.CrossRefGoogle Scholar
  5. 5.
    Jiang H-C, Lin WC, Hua M. Analysis of kinetics of thermal decomposition of melamine blended with phosphorous ionic liquid by green approach. J Therm Anal Calorim. 2018;131:2821–31.CrossRefGoogle Scholar
  6. 6.
    Liebig J. About some nitrogen compounds. Ann Pharm.1834;10:10.Google Scholar
  7. 7.
    Barnett E, Melamine C. J Phys Chem 1930:1497.Google Scholar
  8. 8.
    Ding Y, McKinnon MB. Determination of kinetics and thermodynamics of thermal decomposition for polymers containing reactive flame retardants: application to poly(lactic acid) blended with melamine and ammonium polyphosphate. Polym Degrad Stab. 2016;129:347–62.CrossRefGoogle Scholar
  9. 9.
    Costa L, Camino G. Thermal behaviour of melamine. J Therm Anal. 1988;34:423.CrossRefGoogle Scholar
  10. 10.
    Zusheng H, Linghua T, Fayin J. Non-isothermal kinetic studies on the thermal decomposition of melamine by thermogravimetric analysis. J Anal Sci. 2011;27:279.Google Scholar
  11. 11.
    Bakos LP, Mensah J. Preparation and characterization of a nitrogen-doped mesoporous carbon aerogel and its polymer precursor. J Therm Anal Calorim. 2018;134:933–9.CrossRefGoogle Scholar
  12. 12.
    Nagaishi T, Matsumoto M, Yoshigeana S. Thermal decomposition of the addition compound of melamine with hydrogen peroxide. J Therm Anal. 1990;36:55.CrossRefGoogle Scholar
  13. 13.
    Butoliya SS, Gurnule WB, Zade AB. Study of non-isothermal decomposition and kinetic analysis of 2,4-dihydroxybenzoic acid-melamine-formaldehyde copolymer. E J Chem. 2010;7(3):1101–7.CrossRefGoogle Scholar
  14. 14.
    Rounaghi SA, et al. Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum. J Solid State Chem. 2012;190:8–11.CrossRefGoogle Scholar
  15. 15.
    Thomas A, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem. 2008;18:4893.CrossRefGoogle Scholar
  16. 16.
    Varga J, et al. An evolved gas analysis method for the characterization of sulfur vapor. J Therm Anal Calorim. 2016;127:955–60.CrossRefGoogle Scholar
  17. 17.
    Kobertz D, Guguschev C, Muller M. Investigations at high temperature in both equilibrium and kinetic state with Knudsen effusion mass spectrometry (KEMS) and a skimmer integrated coupling system of mass spectrometer and thermal analysis (STAMS). Open Thermodyn J. 2013;7:71.CrossRefGoogle Scholar
  18. 18.
    Xia H, Wei K. Equivalent characteristic spectrum analysis in TG–MS system. Thermochim Acta. 2015;602:15–21.CrossRefGoogle Scholar
  19. 19.
    Celiz LL, Arii T. Study on thermal decomposition of polymers by simultaneous measurement of TG-DTA and miniature ion trap mass spectrometry equipped with skimmer-type interface. J Therm Anal Calorim. 2014;116:1435–44.CrossRefGoogle Scholar
  20. 20.
    Arii T. Development of a simultaneous thermogravimetry-differential thermal analysis and photoionization mass spectroscopy instrument connected with a skimmer-type interface. Netsu Sokutei (Japan). 2011;38:149–56.Google Scholar
  21. 21.
    Vyazovkin S, Burnham AK, Crisdo JM. ICTAC Kinetics Committee recommendations for performing kinetic. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  22. 22.
    Cruz G, Crnkovic PM. Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. J Therm Anal Calorim. 2016;123:1003–11.CrossRefGoogle Scholar
  23. 23.
    Ramajo-Escalera B, Espina A, Garc´ıa JR. Model-free kinetics applied to sugarcane bagasse combustion. pdf. Thermochim Acta. 2006;448:111–6.CrossRefGoogle Scholar
  24. 24.
    Zhao Y, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat Chem. 2018;10:924–31.CrossRefGoogle Scholar
  25. 25.
    Rongbin L, et al. Quantitative analysis by thermogravimetry-mass spectrum analysis for reactions with evolved gases. J Vis Exp. 2018;140:e58233.Google Scholar
  26. 26.
    Cousson A, Nicolai B, Fillaux F. Melamine (1,3,5-triazine-2,4,6-triamine): a neutron diffraction study at 14 K. ACTA Crystallogr Sect E Crystallogr Commun. 2005;61:222–4.Google Scholar
  27. 27.
    Varga J, Wohlfahrt S, Fischer M. An evolved gas analysis method for the characterization of sulfur vapor. J Therm Anal and Calorim. 2016;127:955–60.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations