Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3055–3064 | Cite as

Comparative evaluation of the predictability of neural network methods on the flammability characteristics of extruded polystyrene from microscale combustion calorimetry

  • Rhoda Afriyie Mensah
  • Lin JiangEmail author
  • Solomon Asante-Okyere
  • Qiang XuEmail author
  • Cong Jin


Predictions of both combustible material flammability and heat release parameters have been long goals in fire safety research, for its complex heat, mass transfer and chemical reaction process in gas phase. In this study, neural network method is employed to predict materials flammability considering its wide application in predicting key properties of engineering problems. The use of group method of data handling (GMDH) and feed forward back-propagation (FFBP) neural networks in predicting the heat of combustion and heat release capacity (HRC) from microscale combustion calorimetry has been examined. The study presented models with excellent predictability though GMDH out-performed FFBP. The deviation of the predicted and measured HRC data from this study was compared with the results of other predictive modelling techniques used in flammability studies. The GMDH neural network results presented the least mean deviation of 4.01 signifying accurate predictions. Hence, this study proposed the use of GMDH in predicting flammability characteristics of materials.


Heat of combustion Heat release capacity Microscale combustion calorimetry Group method of data handling Feed forward back-propagation neural network 



This research is supported by the National Natural Science Fund of China, No. 51776098, and the Fundamental Research Funds for the Central Universities, No. 30918015101.


  1. 1.
    Shi Y, Gui Z, Yuan B, Hu Y, Zheng Y. Flammability of polystyrene/aluminim phosphinate composites containing modified ammonium polyphosphate. J Therm Anal Calorim. 2017;131(2):1067–77. Scholar
  2. 2.
    Shi Y, Xing W, Wang B, Hong N, Zhu Y, Wang C, Hu Y. Synergistic effect of graphitic carbon nitride and ammonium polyphosphate for enhanced thermal and flame-retardant properties of polystyrene. Mater Chem Phys. 2016;177:283–92. Scholar
  3. 3.
    Lyon RE, Walters RN. Pyrolysis combustion flow calorimetry. J Anal Appl Pyrol. 2004;71(1):27–46.CrossRefGoogle Scholar
  4. 4.
    Standard Test Method for Determining Flammability Characteristics of Plastic’s and Other Solid Materials Using Microscale Combustion Calorimetry. ASTM D7309-13.Google Scholar
  5. 5.
    Walters RN, Lyon RE. Microscale combustion calorimeter for determining flammability parameters of materials. Evol Technol Compet Edge. 1997;42:1335–44.Google Scholar
  6. 6.
    Lyon RE, Walters RN, Stoliarov SI. Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci. 2007;47(10):1501–10.CrossRefGoogle Scholar
  7. 7.
    Schartel B, Pawlowski KH, Lyon RE. Pyrolysis combustion flow calorimeter: a tool to assess flame retarded PC/ABS materials. Thermochim Acta. 2007;462(1):1–14.CrossRefGoogle Scholar
  8. 8.
    Yang CQ, He Q, Lyon RE, Hu Y. Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab. 2010;95(2):108–15.CrossRefGoogle Scholar
  9. 9.
    Walters RN, Lyon RE. Molar group contributions to polymer flammability. J Appl Polym Sci. 2003;87:548–63.CrossRefGoogle Scholar
  10. 10.
    Lyon RE, Takemori MT, Safronava N, Stoliarov SI, Walters RN. A molecular basis for polymer flammability. Polymer. 2009;50:2608–17.CrossRefGoogle Scholar
  11. 11.
    Parandekar PV, Browning AR, Prakash O. Modeling the flammability characteristics of polymers using quantitative structure–property relationships (QSPR). Polym Eng Sci. 2015;55:1553–9.CrossRefGoogle Scholar
  12. 12.
    Keshavarz MH, Dashtizadeh A, Motamedoshariati H, Soury H. A simple model for reliable prediction of the specific heat release capacity of polymers as an important characteristic of their flammability. J Therm Anal Calorim. 2017;128:417–26.CrossRefGoogle Scholar
  13. 13.
    Arbib MA. The handbook of brain theory and neural networks, A Bradford Book. 2nd ed. Cambridge: The MIT Press; 2003.Google Scholar
  14. 14.
    Hecht-Nielsen R. Theory of backpropagation neural networks. Presented at IEEE proceedings, international conference on neural network, Washington, DC; 1989.Google Scholar
  15. 15.
    Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. J Appl Biomed. 2013;11:47–58.CrossRefGoogle Scholar
  16. 16.
    Ahn KK, Thanh TD. Nonlinear PID control to improve the control performance of the pneumatic artificial muscle manipulator using neural network. J Mech Sci Technol. 2005;19(1):106–15.CrossRefGoogle Scholar
  17. 17.
    Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods. 2000;43(1):3–31.CrossRefGoogle Scholar
  18. 18.
    Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks: the state of the art. Int J Forecast. 1998;14(1):35–62.CrossRefGoogle Scholar
  19. 19.
    Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: a tutorial. Computer. 1996;29(3):31–44.CrossRefGoogle Scholar
  20. 20.
    Asante-Okyere S, Xu Q, Mensah RA, Jin C, Ziggah YY. Generalized regression and feed forward back propagation neural networks in modelling flammability characteristics of polymethyl methacrylate (PMMA). Thermochim Acta. 2018;667:79–92.CrossRefGoogle Scholar
  21. 21.
    Torrecilla JS, Rodríguez F, Bravo JL, Rothenberg G, Seddon KR, Lopez-Martin I. Optimizing an artificial neural network for predicting the melting point of ionic liquids. Phys Chem Chem Phys. 2008;10(38):5826–31.CrossRefGoogle Scholar
  22. 22.
    Pan Y, Jiang J, Wang Z. Quantitative structure–property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network. J Hazard Mater. 2007;147(1–2):424–30.CrossRefGoogle Scholar
  23. 23.
    Pan Y, Jiang J, Wang Z. Prediction of the flash points of alkanes by group bond contribution method using artificial neural networks. Front Chem Eng China. 2007;1(4):390–4.CrossRefGoogle Scholar
  24. 24.
    Tetteh J, Suzuki T, Metcalfe E, Howells S. Quantitative structure–property relationships for the estimation of boiling point and flash point using a radial basis function neural network. J Chem Inf Comput Sci. 1999;39(3):491–507.CrossRefGoogle Scholar
  25. 25.
    Ivakhnenko AG. Polynomial theory of complex systems. IEEE Trans Syst Man Cybern. 1971;1:364–78.CrossRefGoogle Scholar
  26. 26.
    Li RYM, Fong S, Chong KWS. Forecasting the REITs and stock indices: group method of data handling neural network approach. Pac Rim Prop Res J. 2017;23(2):123–60.Google Scholar
  27. 27.
    Mueller JA. Automatic model generation based on GMDH. In: Kerckhoffs EJH, Snorek M, editors. Modelling and simulation 2001 (Proceedings of the 15th European Simulation Multiconference, Prague, 2001), SCS Europe 2001; 2001, p. 661–8.Google Scholar
  28. 28.
    Rayegani F, Onwubolu GC. Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol. 2014;73(1–4):509–19.CrossRefGoogle Scholar
  29. 29.
    Najafzadeh M, Barani GA, Hessami-Kermani MR. Group method of data handling to predict scour depth around vertical piles under regular waves. Sci Iran. 2013;20(3):406–13.Google Scholar
  30. 30.
    Onwubolu GC. Design of hybrid differential evolution and group method of data handling networks for modeling and prediction. Inf Sci. 2008;178(18):3616–34.CrossRefGoogle Scholar
  31. 31.
    Schrijver MC, Kerckhoffs EJ, Water PJ, Saman KD. Model tuning with the use of heuristic-free GMDH (group method of data handling) networks. In: Proceeding 14th European Simulation Symposium, (c) SCS Europe BVBA, 2002.Google Scholar
  32. 32.
    Astakhov VP, Galitsky VV. Tool life testing in gun drilling: an application of the group method of data handling (GMDH). Int J Mach Tools Manuf. 2005;45(4–5):509–17.CrossRefGoogle Scholar
  33. 33.
    Konaté AA, Pan H, Khan N, Yang JH. Generalized regression and feed-forward back propagation neural networks in modelling porosity from geophysical well logs. J Petrol Explore Prod Technol. 2015;5(2):157–66.CrossRefGoogle Scholar
  34. 34.
    Bebis G, Georgiopoulos M. Feed-forward neural networks. IEEE Potentials. 1994;13(4):27–31.CrossRefGoogle Scholar
  35. 35.
    Cay Y, Cicek A, Kara F, Sağiroğlu S. Prediction of engine performance for an alternative fuel using artificial neural network. Appl Therm Eng. 2012;37:217–25.CrossRefGoogle Scholar
  36. 36.
    Rohani A, Abbaspour-Fard MH, Abdolahpour S. Prediction of tractor repair and maintenance costs using artificial neural network. Expert Syst Appl. 2011;38(7):8999–9007.CrossRefGoogle Scholar
  37. 37.
    May R, Dandy G, Maier. Review of input variable selection methods for artificial neural networks. In: Artificial neural networks-methodological advances and biomedical applications, vol. 10. Intech; 2011. p. 16004.Google Scholar
  38. 38.
    Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)—arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7(3):1247–50.CrossRefGoogle Scholar
  39. 39.
    Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18:255–72.CrossRefGoogle Scholar
  40. 40.
    Mensah RA, Xu Q, Asante-Okyere S, Jin C, Bentum-Micah G. Correlation analysis of cone calorimetry and microscale combustion calorimetry experiments. J Therm Anal Calorim. 2018;10:1–11.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Computer Science and TechnologyNanjing University of Science and TechnologyNanjingChina

Personalised recommendations