Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 2999–3005 | Cite as

Effect of Dy2O3 on thermal properties of adipic acid (AA) as phase-change materials

  • Weibing ZhouEmail author
  • Jun Wei
  • Jiaoqun Zhu
  • Kang Li
  • Xiaomin Cheng


In this work, the effect of rare-earth dysprosium oxide (Dy2O3) on the thermal stability properties of adipic acid (AA) matrix was investigated in detail. The AA/Dy2O3 composites were prepared by melting and mixing method. The microstructure, phase composition and thermal properties of AA/Dy2O3 composites were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and differential scanning calorimeter, respectively. It was found that there was a gradual change in melting temperature and latent heat of fusion after 1000th thermal cycles and the thermal stability of AA can be enhanced by incorporation of Dy2O3. The obtained AA doped with 3.0 mass% dysprosium oxide exhibited a small decline of only 3.2% in the melting latent heat after 1000th cycling tests compared with the decline of 13.7% for pure AA. In addition, the phase transition temperature was 142.1 °C with 227.9 J g−1 in the latent heat of fusion by adding 3.0 mass% dysprosium oxide after 1000th melting/freezing cycles. There was no chemical reaction between AA and Dy2O3 phase during the melting/freezing process, and the AA showed no obvious change in the structures after 1000th melting/freezing cycles. The Dy2O3 particles exhibited a homogenous dispersion in the AA matrix even after 1000th melting/freezing cycles.


Phase-change materials Adipic acid Dysprosium oxide Thermal performance Melting/freezing cycle 



The authors gratefully acknowledge the financial support from the Science and Technology Support Program of Hubei Province (Grant No. 2015BAA107).


  1. 1.
    Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.CrossRefGoogle Scholar
  2. 2.
    Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;95:593–605.CrossRefGoogle Scholar
  3. 3.
    Zhang H, Gao X, Chen C, et al. A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Compos A. 2016;87:138–45.CrossRefGoogle Scholar
  4. 4.
    Sharma RK, Ganesan P, Tyagi VV. Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. J Therm Anal Calorim. 2016;3:1–10.Google Scholar
  5. 5.
    Fu W, Zou T, Liang X, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system. Appl Therm Eng. 2018;138:160–5.CrossRefGoogle Scholar
  6. 6.
    Huang X, Lin Y, Alva G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol Energy Mater Sol Cells. 2017;170:68–72.CrossRefGoogle Scholar
  7. 7.
    Wen R, Zhang X, Huang Y, et al. Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings. Energy Build. 2017;138:197–204.CrossRefGoogle Scholar
  8. 8.
    Mert MS, Mert HH, Sert MJ. Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage. J Therm Anal Calorim. 2018;10:1–11.Google Scholar
  9. 9.
    Yuan Y, Li T, Zhang N, et al. Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2016;124:881–8.CrossRefGoogle Scholar
  10. 10.
    Tian WP, Jia F, Zhang H. Production consumption and development of adipic acid at home and abroad. Chem Intermed. 2005;3:1–4.Google Scholar
  11. 11.
    Haillot D, Bauer T, Kroner U, Tamme R. Thermal analysis of phase change materials in the temperature range 120–150 °C. Thermochim Acta. 2011;512:49–59.CrossRefGoogle Scholar
  12. 12.
    Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy. 2013;112:1357–66.CrossRefGoogle Scholar
  13. 13.
    Xia L, Zhang P. Thermal property measurement and heat transfer analysis of acetamide and acetamide/expanded graphite composite phase change material for solar heat storage. Sol Energy Mater Sol Cells. 2011;95:2246–54.CrossRefGoogle Scholar
  14. 14.
    Cai YB, Zong X, Zhang JJ, Du JM, Dong ZD, Wei QF, Zhao Y, Chen Q, Fong H. The improvement of thermal stability and conductivity via incorporation of carbon nanofibers into electrospun ultrafine composite fibers of lauric acid/polyamide phase change materials for thermal energy storage. Int J Green Energy. 2014;11:861–75.CrossRefGoogle Scholar
  15. 15.
    Karaipekli A, Sari A, Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew Energy. 2007;32:2201–10.CrossRefGoogle Scholar
  16. 16.
    Wang JF, Xie HQ, Xin Z. Thermal properties of heat storage composites containing multiwalled carbon nanotubes. J Appl Phys. 2008;104:113537.1–5.Google Scholar
  17. 17.
    Yang XJ, Yuan YP, Zhang N, Cao XL, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.CrossRefGoogle Scholar
  18. 18.
    Zhang N, Yuan YP, Wang X, Cao XL, Yang XJ, Hu SC. Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J. 2013;231:214–9.CrossRefGoogle Scholar
  19. 19.
    Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93:571–6.CrossRefGoogle Scholar
  20. 20.
    Fang GY, Li H, Chen Z, Liu X. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy. 2010;35:4622–6.CrossRefGoogle Scholar
  21. 21.
    Kansal I, Goel A, Tulyaganov D, Ferreira JMF. Effect of some rare-earth oxides on structure, devitrification and properties of diopside based glasses. Ceram Int. 2009;35:3221–7.CrossRefGoogle Scholar
  22. 22.
    Ding J, Xiao Y, Han P, Zhang Q. Effects of rare earth oxides on dielectric properties of Y2Ti2O7 series ceramics. J Rare Earths. 2010;28:765–8.CrossRefGoogle Scholar
  23. 23.
    Noviyanto A, Yoon DH. Rare-earth oxide additives for the sintering of silicon carbide. Diam Relat Mater. 2013;38:124–30.CrossRefGoogle Scholar
  24. 24.
    Liang H, Yao X, Zhang J, Liu X, Huang Z. The effect of rare earth oxides on the pressureless liquid phase sintering of α-SiC. J Eur Ceram Soc. 2014;34:2865–74.CrossRefGoogle Scholar
  25. 25.
    Kasiarova M, Tatarko P, Burik P, Dusza J, Sajgalik P. Thermal shock resistance of Si3N4 and Si3N4–SiC ceramics with rare-earth oxide sintering additives. J Eur Ceram Soc. 2014;34:3301–8.CrossRefGoogle Scholar
  26. 26.
    Navrotsky A, Lee W, Mielewczyk-Gryn A, Ushakov SV, Anderko A, Wu H, Riman RE. Thermodynamics of solid phases containing rare earth oxides. J Chem Thermodyn. 2015;88:126–41.CrossRefGoogle Scholar
  27. 27.
    Ogata T, Narita H, Tanaka M. Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid. Hydrometallurgy. 2015;152:178–82.CrossRefGoogle Scholar
  28. 28.
    Bezati F, Massardier V, Balcaen J, Froelich D. A study on the dispersion, preparation, characterization and photo-degradation of polypropylene traced with rare earth oxides. Polym Degrad Stab. 2010;96:51–9.CrossRefGoogle Scholar
  29. 29.
    Zhang W, Dong D, Wei Z, Ma Y. Synthesis of lanthanum ricinoleate and its effect on thermal stability and mechanical properties in PVC. J Rare Earths. 2014;32(11):1089–94.CrossRefGoogle Scholar
  30. 30.
    Sharma PK, Ganesan P, Tyagi VV, Mahlia TMI. Accelerated thermal cycle and chemical stability testing of polyethylene glycol (PEG) 6000 for solar thermal energy storage. Sol Energy Mater Sol Cells. 2016;147:235–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations