Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 4, pp 2913–2921 | Cite as

Analysis of transient heat transfer in radial moving fins with temperature-dependent thermal properties

  • Partner Luyanda NdlovuEmail author
  • Raseelo Joel Moitsheki


In this article, thermal analysis of radial moving fins of hyperbolic and rectangular profiles is performed. A time-dependent nonlinear differential equation modeling heat transfer in a radial moving fin is considered. The thermal conductivity and heat transfer coefficient are modeled as linear and power-law functions of temperature, respectively. The analytical solutions are generated using the differential transform method which is an analytical solution technique that can be applied to various types of differential equations. The accuracy of the analytical solutions is validated by benchmarking against the numerical solutions obtained by applying the inbuilt numerical solver in Maple (pdsolve). A good agreement is observed between the analytical and numerical solutions. The effects of embedding parameters on the dimensionless temperature and heat transfer rate are analyzed. The results show that the fin rapidly dissipates heat to the surrounding fluid with an increase in the speed of the moving fin, that is, an increase in the values of the Peclet number. The results also show that the heat transfer through a rectangular fin is more efficient when compared to a fin of hyperbolic profile.


Moving fin Differential transform method Thermal conductivity Heat transfer Fin tip temperature 

List of symbols


Specific heat (\({\text{J}\,\text{kg}}^{-1}\,{\text{K}}\))


Heat transfer coefficient (\({\text{W}\,\text{m}}^{-2}\,\text{K}\))


Heat transfer coefficient at the fin base (\({\text{W}\,\text{m}}^{-2}\,{\text{K}}\))


Thermal conductivity (\({\text{W}\,\text{m}^{-1}}\,{\text{K}}\))


Thermal conductivity at ambient temperature (\({\text{W}\,\text{m}^{-1}}\,{\text{K}}\))


Time (s)


Temperature (K)


Velocity of the fin (m s\(^{-1}\))


Fin radius (m)


Dimensionless fin radius


Thermo-geometric fin parameter


Cross-sectional area (\({\text{m}}^2\))

\(r_{\mathrm{b}}, r_{\mathrm{t}}\)

Inner and outer radii, respectively (m)


Fin length (m)


Fin profile

\(T_ \mathrm{a}\)

Ambient temperature (K)


Fin base temperature (K)


Fin perimeter (m)


Peclet number

\(\varPhi (t,x)\)

Transformed analytical function

\(\phi (t,x)\)

Original analytical function

Greek symbols


Boltzmann constant (\({\text{W}\,\text{m}}^{-2}\,{\text{K}}^4\))

\(\delta _\mathrm{b}\)

Base fin width (m)


Thermal conductivity gradient


Density (\({\text{kg}\,\text{m}}^{-3}\))


Dimensionless time


Thermal diffusivity (\({\text{m}}^2\,{\text{s}^{-1}}\))


Dimensionless temperature



PLN thanks the ESTAC 12 for the opportunity to share this research contribution and Standard Bank of South Africa for funding the doctoral studies. RJM thanks the National Research Foundation South Africa for financial support.


  1. 1.
    Kraus AD, Aziz A, Welty J. Extended surface heat transfer. New York: Wiley; 2001.Google Scholar
  2. 2.
    Kern QD, Kraus AD. Extended surface heat transfer. New York: McGraw-Hill; 1972.Google Scholar
  3. 3.
    Ndlovu PL, Moitsheki RJ. Application of the two-dimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins. J Commun Nonlinear Sci Numer Simul. 2013;18:2689–98.CrossRefGoogle Scholar
  4. 4.
    Mosayebidorcheh S, Rahimi-Gorji M, Ganji DD, Moayebidorcheh T, Pourmehran O, Biglarian M. Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM. J Cent South Univ. 2017;24(3):675–82.CrossRefGoogle Scholar
  5. 5.
    Ndlovu PL, Moitsheki RJ. Analytical solutions for steady heat transfer in longitudinal fins with temperature-dependent properties. J Math Probl Eng. 2013;2013:273052.Google Scholar
  6. 6.
    Jooma R, Harley C. Heat transfer in a porous radial fin: analysis of numerically obtained solutions. J Adv Math Phys. 2017;2017:1658305.Google Scholar
  7. 7.
    Darvishi MT, Kani F. Natural convection and radiation in a radial porous fin with variable thermal conductivity. Int J Appl Mech Eng. 2014;19(1):27–37.CrossRefGoogle Scholar
  8. 8.
    Sobamowo MG. Analysis of convective longitudinal fin with temperature-dependent thermal conductivity and internal heat generation. J Alex Eng. 2017;56:1–11.CrossRefGoogle Scholar
  9. 9.
    Dogonchi AS, Ganji DD. Convection-radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. J Appl Therm Eng. 2016;103:705–12.CrossRefGoogle Scholar
  10. 10.
    Atouei SA, Hosseinzadeh K, Hatamic M, Ghasemid SE, Sahebi SAR, Ganji DD. Heat transfer study on convective-radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods. J Appl Therm Eng. 2015;89:299–305.CrossRefGoogle Scholar
  11. 11.
    Torabi M, Yaghoobi H, Aziz A. Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity. Int J Thermophys. 2012;33:924–41.CrossRefGoogle Scholar
  12. 12.
    Moradi A, Fallah APM, Hayat T, Aldossary OM. On solution of natural convection and radiation heat transfer problem in a moving porous fin. Arabian J Sci Eng. 2014;39:1303–12.CrossRefGoogle Scholar
  13. 13.
    Turkyilmazoglu M. Heat transfer from moving exponential fins exposed to heat generation. Int J Heat Mass Transf. 2018;116:346–51.CrossRefGoogle Scholar
  14. 14.
    Darvishi MT, Khani F, Aziz A. Numerical investigation for a hyperbolic annular fin with temperature dependent thermal conductivity. J Propuls Power Res. 2016;5(1):55–62.CrossRefGoogle Scholar
  15. 15.
    Zhou JK. Differential transform method and its applications for electric circuits. Wuhan: Huarjung University Press; 1986.Google Scholar
  16. 16.
    He JH. Variational iteration method—a kind of nonlinear analytical technique: some examples. Int J Nonlinear Mech. 1999;34:699–708.CrossRefGoogle Scholar
  17. 17.
    He JH, Wu XH. Variational iteration method: New development and applications. J Comput Math Appl. 2007;54:881–94.CrossRefGoogle Scholar
  18. 18.
    Babaelahi M, Raveshi MR. Analytical efficiency analysis of aerospace radiating fin. J Mech Eng Sci. 2014;228(17):3133–40.CrossRefGoogle Scholar
  19. 19.
    Aziz A, Khani F. Convection-radiation from a continuously moving fin of variable thermal conductivity. J Frankl Inst. 2011;348:640–51.CrossRefGoogle Scholar
  20. 20.
    Roy PK, Mondal H, Mallick A. A decomposition method for convective-radiative fin with heat generation. J Ain Shams Eng. 2015;6:307–13.CrossRefGoogle Scholar
  21. 21.
    Ndlovu PL, Moitsheki RJ. Thermal analysis of natural convection and radiation heat transfer in moving porous fins. Front Heat Mass Transf. 2019;12(7):8.Google Scholar
  22. 22.
    Fallo A, Moitsheki RJ, Makinde OD. Analysis of heat transfer in a cylindrical spine fin with variable thermal properties. Defect Diffus Forum. 2018;387:10–22.CrossRefGoogle Scholar
  23. 23.
    Aziz A, Makinde OD. Heat transfer and entropy generation in a two-dimensional orthotropic convection pin fin. Int J Exergy. 2010;7(5):579–92.CrossRefGoogle Scholar
  24. 24.
    Mhlongo MD, Moitsheki RJ, Makinde OD. Transient response of longitudinal rectangular fins to step change in base temperature and in base heat flow conditions. Int J Heat Mass Transf. 2013;57:117–25.CrossRefGoogle Scholar
  25. 25.
    Aziz A, Lopez JRJ. Convection-radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing. Int J Therm Sci. 2011;50:1523–31.CrossRefGoogle Scholar
  26. 26.
    Jaluria Y. Transport from continuously moving materials undergoing thermal processing. J Annu Rev Heat Transf. 1992;4:187–245.CrossRefGoogle Scholar
  27. 27.
    Ünal HC. An analytical study of boiling heat transfer from a fin. Int J Heat Mass Transf. 1988;31(7):1483–96.CrossRefGoogle Scholar
  28. 28.
    Kangalgil F, Ayaz F. Solitary wave solutions for the KdV and mKdV equations by differential transform method. J Chaos Solitons Fractals. 2009;41:464–72.CrossRefGoogle Scholar
  29. 29.
    Ayaz F. On the two-dimensional differential transform method. J Comput Appl Math. 2003;143:361–74.CrossRefGoogle Scholar
  30. 30.
    Torabi M, Yaghoobi H. Series solution for convective-radiative porous fin using differential transform method. J Porous Media. 2013;16(4):341–9.CrossRefGoogle Scholar
  31. 31.
    Mosayebidorcheh S, Farzinpoor M, Ganji DD. Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles. Energy Convers Manag. 2014;86:365–70.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Computer Science and Applied MathematicsUniversity of the Witwatersrand, JohannesburgWitsSouth Africa
  2. 2.Standard Bank of South AfricaJohannesburgSouth Africa

Personalised recommendations