Advertisement

Analysis of thermal stability and pyrolysis kinetic of dibutyl phosphate-based ionic liquid through thermogravimetry, gas chromatography/mass spectrometry, and Fourier transform infrared spectrometry

  • Hui-Chun Jiang
  • Wei-Cheng Lin
  • Min Hua
  • Xu-Hai PanEmail author
  • Chi-Min ShuEmail author
  • Jun-Cheng Jiang
Article
  • 24 Downloads

Abstract

To analyze the feasibility of phosphorus-containing ionic liquids used as flame retardants on flammable materials, thermal stability and pyrolysis kinetics of 1-butyl-3-methylimdazolium dibutyl phosphate ([Bmim][DBP]) were investigated using nonisothermal thermogravimetry. The apparent onset decomposition temperature (T0) and mass fraction of residual carbon were 275.2–297.3 °C (± 0.5 °C) and 8.6–10.2% (± 0.1%), respectively. The apparent activation energy (Ea), pre-exponential factor (A), and most probable kinetic function [G(α)] were calculated using thermokinetic methods as Ea = 152–164 kJ mol−1 (± 2 kJ mol−1), ln A = 27.7 ± 0.4 s−1, and G(α) = − ln(1 − α). The maximum operation temperature was estimated as 166.0 ± 0.2 °C, which was considerably lower than T0. The pyrolysis products were identified through gas chromatograph/mass and Fourier transform infrared spectrometers. As a novel finding, the main flame-retarding mechanism of [Bmim][DBP] occurred primarily in condensed phase. Complementally, [Bmim][DBP] was testified to have the flame-retardant effect on epoxy resin by limited oxygen index and vertical burning tests.

Keywords

Phosphorus-containing ionic liquid Pyrolysis kinetics Maximum operation temperature Pyrolysis products Flame-retardant effect 

List of symbols

A

Pre-exponential factor (s−1)

α

Fraction of conversion (mass%)

β

Heating rate (K min−1)

C

Constant

C0.25

Reaction order, n = 0.25

C1

First-order reaction

C3

Reaction order, n = 3

dα/dt

Mass loss rate (mass% min−1)

(dα/dt)0.5

Mass loss rate at the conversion of 0.5 (mass% min−1)

D2

Valensi reaction

D3

Jander reaction

3D

Z–L–T reaction

Ea

Apparent activation energy (kJ mol−1)

f(α)

Most probable kinetic function

G(α)

Integral mechanism function

[Him]+

1 H-imidazole

ln A

Logarithmic pre-exponential factor (s−1)

m

Fraction of mass residual (mass%)

m/z

Mass charge ratio (°C)

[MHim]+

3-Methyl-1 H-imidazole

[Mim]+

Methyl imidazole

MOT

Maximum operation temperature (°C)

MOT1.0%

Mass loss less than 1.0% of MOT (°C)

R

Universal gas constant (8.314 J mol−1 K−1)

R2

Regression coefficient

t

Time of reaction (min)

T

Temperature (°C)

T0.5

Temperature at the conversion of 0.5 (°C)

Ted

End temperature (°C)

Tm

Maximum temperature (°C)

T0

Apparent onset decomposition temperature (°C)

Tp

Peak temperature (°C)

y1(α)

Standard curve

y2(α)

Experimental curve

Notes

Acknowledgements

This study was very grateful to be supported by the Process Safety and Disaster Prevention Laboratory, Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX17_0915). The authors appreciate the original suggestions and heartfelt inspiration for provided by the members of IL research groups.

References

  1. 1.
    Maton C, Vos N, Stevens CV. Ionic liquid thermal stability: decomposition mechanism and analysis tools. Chem Soc Rev. 2013;42:5963–77.CrossRefGoogle Scholar
  2. 2.
    Zheng L, Bu XX, Fan BH, Wei J, Xing NN, Guan W. Study on thermodynamic property for ionic liquid [C4mim][Lact] (1-butyl-3-methylimidazolium lactic acid). J Therm Anal Calorim. 2016;123:1619–25.CrossRefGoogle Scholar
  3. 3.
    Kroon MC, Buijs W, Peters CJ, Witkamp GJ. Quantum chemical aided prediction of the thermal decomposition mechanism and temperature of ionic liquids. Thermochim Acta. 2007;465:40–7.CrossRefGoogle Scholar
  4. 4.
    Tang G, Deng D, Chen J, Zhou KQ, Zhang H, Huang XJ, Zhou ZJ. The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites. J Therm Anal Calorim. 2017;130:763–72.CrossRefGoogle Scholar
  5. 5.
    Tang S, Qian LJ, Liu XX, Dong YP. Gas-phase flame-retardant effects of a bi-group compound based on phosphaphenanthrene and triazine-trione groups in epoxy resin. Polym Degrad Stab. 2016;133:350–7.CrossRefGoogle Scholar
  6. 6.
    Zhang L, Wang YC, Liu Q, Cai XF. Synergistic effects between silicon-containing flame retardant and DOPO on flame retardancy of epoxy resins. J Therm Anal Calorim. 2016;123:1343–50.CrossRefGoogle Scholar
  7. 7.
    Wang YH, Zhang S, Wu XM, Lu CL, Cai YQ, Ma LJ, Shi G, Yang LT. Effect of montmorillonite on the flame-resistant and mechanical properties of intumescent flame-retardant poly(butylene succinate) composites. J Therm Anal Calorim. 2017;128:1417–27.CrossRefGoogle Scholar
  8. 8.
    Xu JZ, He ZM, Wu WH, Ma HY, Xie JX, Qu HQ, Jiao YH. Study of thermal properties of flame retardant epoxy resin treated with hexakis[p-(hydroxymethyl)phenoxy]cyclotriphosphazene. J Chem Anal Calorim. 2013;114:1341–50.Google Scholar
  9. 9.
    Chen SJ, Wang CL, Li J. Effect of alkyl groups in organic part of polyoxometalates based ionic liquids on properties of flame retardant polypropylene. Thermochim Acta. 2016;631:51–8.CrossRefGoogle Scholar
  10. 10.
    Yang XF, Ge NL, Hu LY, Gui HG, Wang ZG, Ding YS. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polym Adv Technol. 2013;24:568–75.CrossRefGoogle Scholar
  11. 11.
    Chen SJ, Li J, Zhu YK, Guo ZB, Su SP. Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid. J Mater Chem A. 2013;48:15242–6.CrossRefGoogle Scholar
  12. 12.
    Sorai M. Comprehensive handbook of calorimetry and thermal analysis. Chichester: Wiley; 2004.Google Scholar
  13. 13.
    Ullah Z, Bustam MA, Man Z, Khan AS. Thermal stability and kinetic study of benzimidazolium based ionic liquid. Procedia Eng. 2016;148:215–22.CrossRefGoogle Scholar
  14. 14.
    Kamavaram V, Reddy RG. Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci. 2007;47:773–7.CrossRefGoogle Scholar
  15. 15.
    Muhammad A. Thermal and kinetic analysis of pure and contaminated ionic liquid: 1-butyl-2, 3-dimethylimidazolium chloride (BDMIMCl). Pol J Chem Technol. 2016;18:122–5.CrossRefGoogle Scholar
  16. 16.
    Heym F, Etzold BJM, Kern C, Jess A. An improved method to measure the rate of vaporization and thermal decomposition of high boiling organic and ionic liquids by thermogravimetrical analysis. Phys Chem Chem Phys. 2010;12:12089–100.CrossRefGoogle Scholar
  17. 17.
    Abusaidi H, Ghaieni HR. Thermal analysis and kinetic decomposition of nitro-functional hydroxyl-terminated polybutadiene bonded explosive. J Chem Anal Calorim. 2017;127:2301–6.Google Scholar
  18. 18.
    Golofit T, Zielenkiewicz T. The influence of substituents position on products of dinitrotoluene isomers initial thermal decomposition. J Chem Anal Calorim. 2017;128:311–7.Google Scholar
  19. 19.
    Chen Y, Cao YY, Shi Y, Xue ZM, Mu TC. Quantitative research on the vaporization and decomposition of [EMIM][Tf2N] by thermogravimetric analysis–mass spectrometry. Ind Eng Chem Res. 2012;51:7418–27.CrossRefGoogle Scholar
  20. 20.
    Seeberger A, Andresen AK, Jess A. Prediction of long-term stability of ionic liquids at elevated temperatures by means of non-isothermal thermogravimetrical analysis. Phys Chem Chem Phys. 2009;11:9375–81.CrossRefGoogle Scholar
  21. 21.
    Navarro P, Larriba M, Rojo E, Garcia J, Rodríguez F. Thermal properties of cyano-based ionic liquid. J Chem Eng Data. 2013;58:2187–93.CrossRefGoogle Scholar
  22. 22.
    Efimova A, Pfützner L, Schmidt P. Thermal stability and decomposition mechanism of 1-ethyl-3-methylimidazolium halides. Thermochim Acta. 2015;604:129–36.CrossRefGoogle Scholar
  23. 23.
    Mohamed MA, Attia AK. Thermal behavior and decomposition kinetics of cinnarizine under isothermal and non-isothermal conditions. J Chem Anal Calorim. 2017;127:1751–6.Google Scholar
  24. 24.
    Sun DC, Yao YW. Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins. Polym Degrad Stab. 2011;96:1720–4.CrossRefGoogle Scholar
  25. 25.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S, Chrissafis K, Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  27. 27.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  28. 28.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.CrossRefGoogle Scholar
  29. 29.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  30. 30.
    Málek J, Smrčka V. The kinetic analysis of the crystallization processes in glasses. Thermochim Acta. 1991;186:153–69.CrossRefGoogle Scholar
  31. 31.
    Málek J. A computer program for kinetic analysis of non-isothermal thermos-analytical data. Thermochim Acta. 1989;138:337–46.CrossRefGoogle Scholar
  32. 32.
    Muhammad A, Mutalib AMI, Wilfred CD, Murugesan T, Shafeeq A. Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions. J Chem Therm. 2008;40:1433–8.CrossRefGoogle Scholar
  33. 33.
    Khan AS, Man Z, Bustam MA, Kait CF, Ullah Z, Nasrullah A, Khan MI, Gonfa G, Ahmad P, Muhammad N. Kinetics and thermodynamic parameters of ionic pretreated rubber wood biomass. J Mol Liq. 2016;223:754–62.CrossRefGoogle Scholar
  34. 34.
    Karolina K, Beata G, Grzegorz G, Artur B, Zaneta KK. Thermal decomposition of binder based on etherified starch to use in foundry industry. J Therm Anal Calorim. 2017;130:285–90.CrossRefGoogle Scholar
  35. 35.
    Parajó JJ, Teijeira T, Fernández J, Salgado J, Villanueva M. Thermal stability of some imidazolium [NTf2] ionic liquid: isothermal and dynamic kinetic study through thermogravimetric procedures. J Chem Thermodyn. 2017;112:105–13.CrossRefGoogle Scholar
  36. 36.
    Salgado J, Villanueva M, Parajó JJ, Fernández J. Long-term thermal stability of five imidazolium ionic liquids. J Chem Thermodyn. 2013;65:184–90.CrossRefGoogle Scholar
  37. 37.
    Shen MY, Kuan CF, Kuan SC, Chen CH, Wang JH, Yip MC, Chiang CL. Preparation, characterization, thermal, and flame-retardant properties of green silicon-containing epoxy/functionalized graphene nanosheets composites. J Nanomater. 2013;2013:363–71.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.College of Safety Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Graduate School of Engineering Science and TechnologyNational Yunlin University of Science and Technology (YunTech)DouliouTaiwan, ROC
  3. 3.Jiangsu Key Laboratory of Hazardous Chemical Safety and ControlNanjingChina
  4. 4.Center for Process Safety and Industrial Disaster Prevention, School of EngineeringYunTechDouliouTaiwan, ROC
  5. 5.Department of Safety, Health, and Environmental EngineeringYunTechDouliouTaiwan, ROC

Personalised recommendations