Advertisement

Application of logistic function to describe kinetics of non-isothermal dehydroxylation of fullerol

  • Branislav StankovicEmail author
  • Jelena Jovanovic
  • Borivoj Adnadjevic
Article
  • 16 Downloads

Abstract

A sample of fullerol C60(OH)24 was synthesized. The basic physicochemical characterization of the synthesized fullerol was done. The non-isothermal kinetics of C60(OH)24 dehydroxylation has been investigated. The thermogravimetric curves have been recorded at different heating rates ranging from 5 to 25 K min−1. By application of the Kissinger–Akahira–Sunose isoconversion method, it was found that the activation energy complexly changes with the dehydroxylation degree. The possibility of mathematical description of the kinetics of fullerol dehydroxylation by logistic function was investigated. Fullerol dehydroxylation conversion curves were completely mathematically described by the linear combination of two logistic functions at all of the investigated heating rates. The changes in the values of parameters of logistic functions with heating rate were established. It was shown that complex kinetics of C60(OH)24 dehydroxylation consists of two consecutive dehydroxylation reactions (low-temperature and high-temperature components). The values of the kinetic parameters for two components of dehydroxylation process were calculated. A model for fullerol dehydroxylation has been discussed.

Keywords

Fullerol Dehydroxylation Kinetic Activation energy Logistic function 

Notes

Acknowledgements

This investigation was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia trough Project 172015OI.

References

  1. 1.
    Gokhale MM, Somani RR. Fullerenes: chemistry and its applications. Mini Rev Org Chem. 2015;12:355–66.CrossRefGoogle Scholar
  2. 2.
    Zhao L, Gao Z, Ran S, Cao Z, Fang Z. The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes. J Therm Anal Calorim. 2014;115:1235–44.CrossRefGoogle Scholar
  3. 3.
    Ghanbari B, Gholamnezhad P, Hatami M. Synthesis and thermogravimetric analysis of inclusion complexes of O2N2-donor Aza-crown macrocyclic ligands with [60]fullerene. J Therm Anal Calorim. 2014;118:1631–7.CrossRefGoogle Scholar
  4. 4.
    Zhou X, Ran S, Hu H, Fang Z. Improving flame-retardant efficiency by incorporation of fullerene in styrene–butadiene–styrene block copolymer/aluminum hydroxide composites. J Therm Anal Calorim. 2016;125:199–204.CrossRefGoogle Scholar
  5. 5.
    Kokubo K. Water-soluble single-nano carbon particles: Fullerenol and its derivatives. In: Hashim AA, editor. The delivery of nanoparticles. New York: InTech; 2012. p. 317–32.Google Scholar
  6. 6.
    Jacevic V, Djordjevic A, Srdjenovic B, Milic-Tores V, Segrt Z, Dragojevic-Simic V, Kuca K. Fullerenol nanoparticles prevents doxorubicin-induced acute hepatoxicity in rats. Exp Mol Pathol. 2017;102:360–9.CrossRefGoogle Scholar
  7. 7.
    Roy P, Bag S, Chakraborty D, Dasgupta S. Exploring the inhibitory and antioxidant effect of fullerene and fullerenol on ribonuclease A. ACS Omega. 2018;9:12270–83.CrossRefGoogle Scholar
  8. 8.
    Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamama S, Oshima T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci. 2009;14:69–72.CrossRefGoogle Scholar
  9. 9.
    Liu Y, Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drud Deliv Rev. 2016;103:76–89.CrossRefGoogle Scholar
  10. 10.
    Li Y, Luo HB, Zhang HY, Guo Q, Yao HC, Li JQ, Chang Q, Yang JG, Wang F, Wang CD, Yang X, Liu ZG, Ye X. Potential hepatoprotective effects of fullerenol nanoparticles on alcohol-induced oxidative stress by ROS. RSC Adv. 2016;6:31122–30.CrossRefGoogle Scholar
  11. 11.
    Seke M, Petrovic D, Djordjevic A, Jovic D, Labudovic-Borovic M, Kanacki Z, Jankovic M. Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue. Nanotechnology. 2016;27:485101.CrossRefGoogle Scholar
  12. 12.
    Georgieva AT, Vijay Pappu V, Krishna V, Pando G, Georgiev PG, Ghiviriga I, Indeglia P, Xin X, Fan ZH, Koopman B, Pardalos PM, Moudgil B. Polyhydroxy fullerenes. J Nanopart Res. 2013;15:1690.CrossRefGoogle Scholar
  13. 13.
    Xing G, Zhang J, Zhao Y, Tang J, Zhang B, Gao X, Yuan H, Qu L, Cao W, Chai Z, Ibrahim K, Su R. Influences of Structural Properties on Stability of Fullerenols. J Phys Chem B. 2004;108:11473–9.CrossRefGoogle Scholar
  14. 14.
    Shimizu K, Kubota R, Kobayashi N, Tahara M, Sugimoto N, Nishimura T, Ikarashi Y. Cytotoxic effects of hydroxylated fullerenes in three types of liver cells. Materials. 2013;6:2713–22.CrossRefGoogle Scholar
  15. 15.
    Ueno H, Yamakura S, Arastoo RS, Oshima T, Kokubo K. Systematic evaluation and mechanistic investigation of antioxidant activity of fullerenols using β-carotene bleaching assay. J Nanomater. 2014;2014:802596.CrossRefGoogle Scholar
  16. 16.
    Goswami TH, Singh R, Alam S, Mathur GN. Thermal analysis: a unique method to estimate the number of substituents in fullerene derivatives. Thermochim Acta. 2004;419:97–104.CrossRefGoogle Scholar
  17. 17.
    Chiang LY, Wang L-Y, Swirczewski JW, Soled S, Cameron S. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J Org Chem. 1994;59:3960–8.CrossRefGoogle Scholar
  18. 18.
    Chiang LY, Upasani RB, Swirczewski JW, Soled S. Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J Am Chem Soc. 1993;115:5453–7.CrossRefGoogle Scholar
  19. 19.
    Fileti EE, Rivelino R, de Brito Mota F, Malaspina T. Effects of hydroxyl group distribution on the reactivity, stability and optical properties of fullerenols. Nanotechnology. 2008;19:365703.CrossRefGoogle Scholar
  20. 20.
    Rodríguez-Zavala JG, Guirado-López RA. Structure and energetics of polyhydroxylated carbon fullerenes. Phys Rev B. 2004;69:075411.CrossRefGoogle Scholar
  21. 21.
    Rodríguez-Zavala JG, Guirado-López RA. Stability of highly OH-covered C60 fullerenes: role of coadsorbed O impurities and of the charge state of the cage in the formation of carbon-opened structures. J Phys Chem A. 2006;110:9459–69.CrossRefGoogle Scholar
  22. 22.
    Guirado-López RA, Rincón ME. Structural and optical properties of highly hydroxylated fullerenes: stability of molecular domains on the C60 surface. J Chem Phys. 2006;125:154312.CrossRefGoogle Scholar
  23. 23.
    He H, Zheng L, Jin P, Yang M. The structural stability of polyhydroxylated C60(OH)24: density functional theory characterisation. Comput Theor Chem. 2011;974:16–20.CrossRefGoogle Scholar
  24. 24.
    Gao XJ, Shen X, Chen B-Z, Gao X. Improved description for the structures of fullerenols C60(OH)n (n = 12–48) and C2v(9)–C82(OH)x (x = 14–58). J Phys Chem C. 2016;120:11709–15.CrossRefGoogle Scholar
  25. 25.
    Adnađević B, Gigov M, Sinđić M, Jovanović J. Comparative study on isothermal kinetics of fullerol formation under conventional and microwave heating. Chem Eng J. 2008;140:570–7.CrossRefGoogle Scholar
  26. 26.
    Khawam A, Flanagan DR. Solid-state models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.CrossRefGoogle Scholar
  27. 27.
    Akahira T, Sunose T. Trans. Joint Convention of Four Electrical Institutes, Paper No. 246, 1969 Research Report/Chiba Institute of Technology Sci Technol. 1971;16:22–31.Google Scholar
  28. 28.
    Vyazovkin S, Wight CA. Kinetics in Solids. Annu Rev Phys Chem. 1997;48:125–49.CrossRefGoogle Scholar
  29. 29.
    Keshri S, Tembe BL. Thermodynamics of hydration of fullerols [C60(OH)n] and hydrogen bond dynamics in their hydration shells. J Chem Phys. 2017;146:074501.CrossRefGoogle Scholar
  30. 30.
    Naya S, Cao R, Artiga R. Local polynomial estimation of TGA derivation using logistic regression for pilot bandwidth selection. Termochim Acta. 2003;406:177–83.CrossRefGoogle Scholar
  31. 31.
    Vyzovkin S. Modern isoconversional kinetics: From misconceptions to advances. In: Vyzovkin S, Koga N, Shick C, editors. Handbook of thermal analysis and calorimetry. Elsevier: Amsterdam; 2018. p. 131–72.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations