Thermal analysis of salts from 4-nitrophenol and aliphatic amines

  • Márcio LazzarottoEmail author
  • Francine Furtado Nachtigall
  • Geisa Liandra de Andrade de Siqueira
  • Simone Rosa da Silveira Lazzarotto
  • Marcelo Lazzarotto


Solid samples obtained from 4-nitrophenol and aliphatic amines, in excess of amine, were submitted to thermal analysis. The TGA/DTA showed two endothermic events, with exception of tert-butylamine, which showed three endothermic peaks. The first event was the melting of the ionic salt, which temperature does not follow a pattern, and is maxim for ethylammonium minimal for butylammonium salt. For methylammonium and ethylammonium, the fusion is followed by mass loss corresponding to one amine by 4-nitrophenol, while for the others ammonium salts, this event marks the beginning of the mass variation, that is maintained until the decomposition of the 4-nitrophenol at 485 K. The temperature of the event depends of the length of the chain of the amine, while the second occurs at the same temperature for all amines.


Ammonium salts 4-Nitrophenol Proton transfer Thermal analysis 



The authors are grateful to Embrapa Florestas, CAPES and CNPq.


  1. 1.
    Barry JE, Finkelstein M, Ross SD. Hydrogen-bonded complexes. 5. Phenol-amine complexes. J Org Chem. 1984;49:1669–71.CrossRefGoogle Scholar
  2. 2.
    Coleman CA, Murray CJ. Hydrogen bonding between N-pyridinium phenolate and O–H donors in acetonitrile. J Org Chem. 1992;57:3578–82.CrossRefGoogle Scholar
  3. 3.
    Nachtigall FF, Lazzarotto M, Nome F. Interaction of calix[4]arene and aliphatic amines: a combined NMR, spectrophotometric and conductimetric investigation. J Braz Chem Soc. 2002;13:295–9.CrossRefGoogle Scholar
  4. 4.
    Scott R, De Palma D, Vinogradov S. Proton-transfer complexes. I. Preferential solvation of p-nitrophenol-amine complexes in nonaqueous-solvent mixtures. J Phys Chem. 1968;72:3192–201.CrossRefGoogle Scholar
  5. 5.
    Scott R, Vinogradov S. Proton-transfer complexes. II. Role of solvent polarity and the specific solvation of p-nitrophenol-amine complexes in aqueous solutions. J Phys Chem. 1969;73:1890–7.CrossRefGoogle Scholar
  6. 6.
    Mizutani T, Takagi H, Ueno Y, Horiguchi T, Yamamura K, Ogoshi H. Hydrogen-bonding-based thermochromic phenol-amine complexes. J Phys Org Chem. 1998;11:737–42.CrossRefGoogle Scholar
  7. 7.
    Babu B, Chandrasekaran J, Jayaramakrishnan V, et al. 2-Amino-6-methylpyridinium nitrophenolate nitrophenol. J Therm Anal Calorim. 2018;134:1059. Scholar
  8. 8.
    Lazzarotto M, Nachtigall FF, Schnitzler E, Castellano EE. Thermo gravimetric analysis of supramolecular complexes of p-tert-butylcalix[6]arene and ammonium cations: crystal structure of diethylammonium complex. Thermochim Acta. 2005;429:111–7.CrossRefGoogle Scholar
  9. 9.
    Muralidharan S, Srinivasan T, Vidyalakshmi Y, Velmurugan D, Gopalakrishnan R. Growth and characterization of sodium 4-nitrophenolate: 4-nitrophenol dihydrate by gel growth technique. Int J ChemTech Res. 2014;6:2946–51.Google Scholar
  10. 10.
    Crisan M, Vlase G, Szerb EI, et al. Thermal and kinetics studies of primary, secondary and tertiary alkanolammonium salts of 4-nitrobenzoic acid. J Therm Anal Calorim. 2018;132:1409–18.CrossRefGoogle Scholar
  11. 11.
    Selvakumar S, Leo Rajesh A. Synthesis and characterization of organic nonlinear optical material: urea para-nitrophenol. J Mater Sci Mater Electron. 2016;27:7509–17.CrossRefGoogle Scholar
  12. 12.
    Lawrence SA. Amines: synthesis, properties and applications. Cambridge: Cambridge University Press; 2004. p. 64.Google Scholar
  13. 13.
    Yingcheng L, Puerto M, Bao X, Zhang W, Jin J, Su Z, Shen S, Hirasaki G, Miller C. Synergism and performance for systems containing binary mixtures of anionic/cationic surfactants for enhanced oil recovery. J Surfactants Deterg. 2017;20:21–34.CrossRefGoogle Scholar
  14. 14.
    Matsumoto H, Kageyama H, Miyazaki Y. Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. Chem Commun. 2002;211:726–7.Google Scholar
  15. 15.
    Qu J, Truhan JJ, Dai S, Luo H, Blau PJ. Ionic liquids with ammonium cations as lubricants or additives. Tribol Lett. 2006;22:207–14.CrossRefGoogle Scholar
  16. 16.
    Ahn YN, Lee SH, Lee GS, Kim H. Effect of alkyl branches on the thermal stability of quaternary ammonium cations in organic electrolytes for electrochemical double layer capacitors. Phys Chem Chem Phys. 2017;19:19959–66.CrossRefGoogle Scholar
  17. 17.
    Xiao JM. Dimethylammonium 4-nitrophenolate–4-nitrophenol (1/1). Acta Cryst E. 2010;66:791–2.CrossRefGoogle Scholar
  18. 18.
    Dinesh S, Mishra DS. Estimation of entropy of vaporization: effect of chain length. Chemosphere. 1990;21:111–7.CrossRefGoogle Scholar
  19. 19.
    Mason D, Bernstein J. A crystal packing—melting point correlation for quaternary ammonium salts molecular. Cryst Liq Cryst Sect A. 2006;242:179–91.CrossRefGoogle Scholar
  20. 20.
    Maccoll A, Nagra SS. Catalysis by hydrogen halides in the gas phase. Part XXI. Butylamine and hydrogen bromide. J Chem Soc B. 1971. Scholar
  21. 21.
    Kanagathara N, Marchewka MK, Anbalagan G. Thermal decomposition behaviour of bis(4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate. Acta Phys Pol A. 2016;6:1236–41.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Inmetro SUR-RSPorto AlegreBrazil
  3. 3.Universidade Estadual de Ponta GrossaPonta GrossaBrazil
  4. 4.Embrapa FlorestasColomboBrazil

Personalised recommendations