LLDPE kinetic properties estimation combining thermogravimetry and differential scanning calorimetry as optimization targets
- 137 Downloads
Abstract
Thermal analysis techniques play a crucial role to characterize solid-phase thermal decomposition, since it provides information about how mass is lost (thermal gravimetric analysis) and energy released [differential scanning calorimetry (DSC)]. However, most of the input thermal parameters and kinetic properties to be used in fire computer modelling cannot be obtained directly from those tests. Early works looked forward achieving those parameters employing indirect fitting methods, which enable the user to obtain a set of parameters capable of simulating accurately the mass loss curve (TG) or its derivative (DTG). This work aims to study the possibility of adding the energy released as a new target in the process, applying the analysis to linear low-density polyethylene. Results obtained in the present work reveal the major challenge of getting a set of parameters that can also fit DSC curve. The level of accuracy of the fitting to TG curve is higher than to DSC curve. This fact increases the value of the errors when both curves are used as targets to approach. As a result, this paper includes an alternative to consider the effects of the DSC curve.
Keywords
Thermal analysis Thermal decomposition Fire computer models Optimization methods LLDPEList of symbols
- A
Pre-exponential factor (s−1)
- Ea
Activation energy (kJ kmol−1)
- n
Reaction order
- Hr
Heat of reaction (kJ kg−1)
- r
Reaction rate at temperature T
- T
Temperature (°C)
- ρ
Density (kg m−3)
- Cp
Specific heat (kJ kg−1 K−1)
- k
Conductivity (W m−1 K−1)
- ε
Emissivity
- η
Absorption coefficient (m−1)
- \(Y_{{{\text{s}},{\text{i}}}}\)
Quotient between density of the material at temperature T and the initial density
- \(r_{\text{ij}}\)
Reaction rate (kg s−1)
- \(v_{{{\text{si}}^\prime {\text{j}}}}\)
Yield produced by the reaction i
- \(r_{{{\text{i}}^\prime {\text{j}}}}\)
Residue produced by the reaction i
- α
Coefficient of the conversion factor of reactant/-
- TG
Thermogravimetric analysis
- STA
Simultaneous thermal analysis
- DTG
Derivative thermogravimetric analysis
- MLR
Mass loss rate
- DSC
Differential scanning calorimetry
- FPA
Fire Propagation Apparatus
- M
Reacting material
- P
Submaterial generated as the product of the reaction
- F
Fuel gas released by the reaction
- G
Non-burning gas released by the reaction
- R
Residue produced by the reaction
- νp
Amount of submaterial produced
- νf
Amount of fuel gas released
- νg
Amount of non-burning gas released
- νr
Amount of residue produced
- \(X_{\text{error}}^{\text{curve}}\)
Error between experimental and simulated curves
- γ
Influence of the TG curve over global error
- β
Influence of the DSC curve over global error
Notes
Acknowledgements
The authors would like to thank to the Consejo de Seguridad Nuclear for the cooperation and co-financing the project “Simulation of fires in nuclear power plants” and to CAFESTO Project funded by the Spanish Ministry of Science, Innovation and Universities and the Spanish State Research Agency through public–private partnerships (Retos Colaboración 2017 call, ref RTC-2017-6066-8) co-funded by ERDF under the objective “Strengthening research, technological development and innovation”.
References
- 1.Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355(1–2):35–42.Google Scholar
- 2.Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.Google Scholar
- 3.Laidler KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61(6):494.Google Scholar
- 4.Lautenberger C, Fernandez-Pello C. Generalized pyrolysis model for combustible solids. Fire Saf J. 2009;44(6):819–39.Google Scholar
- 5.Stoliarov S, Lyon R. Thermo-kinetic model of burning for pyrolyzing materials. Fire Saf Sci. 2008;9:1141–52.Google Scholar
- 6.Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst. 2011;33(2):2599–606.Google Scholar
- 7.Snegirev AY, Talalov VA, Stepanov VV, Harris JN. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J. 2013;59:132–50.Google Scholar
- 8.McGrattan K, Hostikka S, McDermott R, Floyd J, Vanella M. Fire Dynamics simulator technical reference Guide Vol.1. NIST Special Publication 1018-1. Sixth Edition. 2018.Google Scholar
- 9.Rotaru A, Goşa M, Rotaru P. Computational thermal and kinetic analysis. J Therm Anal Calorim. 2008;94(2):367–71.Google Scholar
- 10.Rotaru A, Goşa M. Computational thermal and kinetic analysis. J Therm Anal Calorim. 2009;97(2):421–6.Google Scholar
- 11.Haines PJ. Principles of thermal analysis and calorimetry. R Soc Chem. 2002.Google Scholar
- 12.Erceg M, Krešić I, Vrandečić NS, Jakić M. Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide). J Therm Anal Calorim. 2017;131(1):325–34.Google Scholar
- 13.Liu J, Song D, Guan H. Isothermal kinetics approach to investigating the oxidation process of red phosphorus in air. J Therm Anal Calorim. 2017;128(3):1801–10.Google Scholar
- 14.Agarwal G, Liu G, Lattimer B. Pyrolysis and oxidation of cardboard. Fire Saf Sci. 2014;11:124–37.Google Scholar
- 15.Roduit B. Computational aspects of kinetic analysis. Thermochim Acta. 2000;355(1–2):171–80.Google Scholar
- 16.Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2018;128(1):335–48.Google Scholar
- 17.Marian E, Tita B, Tita IC, Jurca T, Vicas L. Thermal behaviour and kinetic study of amygdalin. J Therm Anal Calorim. 2018;134(1):765–72.Google Scholar
- 18.Salmani M, Alamdari EK, Firoozi S. Isoconversional analysis of thermal dissociation kinetics of hematite in air and inert atmospheres. J Therm Anal Calorim. 2017;128(3):1385–90.Google Scholar
- 19.Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsanger B, Spitzer D, Moulard H, Dilhan D. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93(1):143–52.Google Scholar
- 20.Wang Z, Wei R, Ning X, Xie T, Wang J. Thermal degradation properties of LDPE insulation for new and aged fine wires. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7957-5.CrossRefGoogle Scholar
- 21.Chen R, Xu X, Zhang Y, Lo S, Lu S. Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic. Appl Therm Eng. 2018;136:484–91.Google Scholar
- 22.Ferreiro AI, Rabaçal M, Costa M. A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues. Energy Convers Manag. 2016;125:290–300.Google Scholar
- 23.Hasalová L, Ira J, Jahoda M. Practical observations on the use of Shuffled Complex Evolution (SCE) algorithm for kinetic parameters estimation in pyrolysis modeling. Fire Saf J. 2016;80:71–82.Google Scholar
- 24.Lautenberger C, Fernandez-Pello C. Optimization algorithms for material pyrolysis property estimation. Fire Saf Sci. 2011;10:751–64.Google Scholar
- 25.Rein G, Lautenberger C, Fernandez-Pello C, Torero JL, Urban DL. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame. 2016;146(1–2):95–108.Google Scholar
- 26.Capote J, Alvear D, Abreu O, Lazaro M, Puente E. Pyrolysis characterization of a lineal low density polyethylene. Fire Saf Sci. 2011;10:877–88.Google Scholar
- 27.Lautenberger C, Rein G, Fernandez-Pello C. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J. 2006;41(3):204–14.Google Scholar
- 28.Webster RD. Pyrolysis model parameter optimization using a customized stochastic hill—climber algorithm and bench-scale fire test data. MS Thesis, Department of Fire Protection Engineering, University of Maryland. 2009.Google Scholar
- 29.Stoliarov SI, Walters RN. Determination of the heats of gasification of polymers using differential scanning calorimetry. Polym Degrad Stab. 2008;93(2):422–7.Google Scholar
- 30.Lautenberger C, Kim E, Dembsey N, Fernandez-Pello C. The role of decomposition kinetics in pyrolysis modeling—application to a fire retardant polyester composite. Fire Saf Sci. 2008;9:1201–12.Google Scholar
- 31.Li J, Stoliarov SI. Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers. Combust Flame. 2013;160(7):1287–97.Google Scholar
- 32.Li J, Stoliarov SI. Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers. Polym Degrad Stab. 2014;106:2–15.Google Scholar
- 33.Stoliarov SI, Li J. Parameterization and validation of pyrolysis models for polymeric materials. Fire Technol. 2016;52(1):79–91.Google Scholar
- 34.Li J, Gong J, Stoliarov SI. Development of pyrolysis models for charring polymers. Polym Degrad Stab. 2015;115:138–52.Google Scholar
- 35.McKinnon MB, Stoliarov SI, Witkowski A. Development of a pyrolysis model for corrugated cardboard. Combust Flame. 2013;160(11):2595–607.Google Scholar
- 36.Li KY, Pau DSW, Hou YN, Ji J. Modeling pyrolysis of charring materials: determining kinetic properties and heat of pyrolysis of medium density fiberboard. Ind Eng Chem Res. 2013;53(1):141–9.Google Scholar
- 37.Alonso A, Puente E, Lázaro P, Lázaro D, Alvear D. Experimental review of oxygen content at mixing layer in cone calorimeter. J Therm Anal Calorim. 2017;129(2):639–54.Google Scholar
- 38.ASTM-E1131-08. Standard Test Method for compositional analysis by thermogravimetry. ASTM International. 2014.Google Scholar
- 39.Zong R, Wang Z, Liu N, Hu Y, Liao G. Thermal degradation kinetics of polyethylene and silane-crosslinked polyethylene. J Appl Polym Sci. 2005;98(3):1172–9.Google Scholar
- 40.Al-Salem SM, Bumajdad A, Khan AR, Sharma BK, Chandrasekaran SR, Al-Turki FA, Al-Dhafeeri AT. Non-isothermal degradation kinetics of virgin linear low density polyethylene (LLDPE) and biodegradable polymer blends. J Polym Res. 2018;25(5):111. https://doi.org/10.1007/s10965-018-1513-7.CrossRefGoogle Scholar
- 41.Dollimore D, Tong P, Alexander KS. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim Acta. 1996;282–283:13–27.Google Scholar
- 42.Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromol Chem Phys. 2001;202(6):775–84.Google Scholar
- 43.Aboulkas A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag. 2010;51(7):1363–9.Google Scholar
- 44.Marcilla A, Beltrán M. Kinetic study of the thermal decomposition of polystyrene and polyethylene-vinyl acetate graft copolymers by thermogravimetric analysis. Polym Degrad Stab. 1995;50(1):117–24.Google Scholar
- 45.Lázaro D, Puente E, Lázaro M, Alvear D. Characterization of polyethylene decomposition reactions using the TG curve. IRECHE. 2014;6(1):77–82.Google Scholar
- 46.Li K-Y, Huang X, Fleischmann C, Rein G, Ji J. Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy Fuels. 2014;28(9):6130–9.Google Scholar
- 47.Ding Y, Wang C, Chaos M, Chen R, Lu S. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution. Bioresour Technol. 2016;200:658–65.PubMedGoogle Scholar
- 48.Duan Q, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res. 1992;28(4):1015–31.Google Scholar
- 49.Jiang Y, Gong S. Bus holding strategy based on shuffled complex evolution method. Front Comput Sci. 2012;6(4):462–8.Google Scholar
- 50.Chen Z, Liu L, Li L, Li H. A two-stage model for project optimization in transportation infrastructure management system. Math. Probl. Eng. 2014;1–8.Google Scholar
- 51.Vrugt JA, Gupta HV, Bouten W, Sorooshian S. A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res. 2003;39(8):1201. https://doi.org/10.1029/2002wr001642.CrossRefGoogle Scholar
- 52.Van Griensven A, Bauwens W. Multiobjective autocalibration for semidistributed water quality models. Water Resour Res. 2013;39(12):1348. https://doi.org/10.1029/2003wr002284.CrossRefGoogle Scholar
- 53.Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst. 2011;33(2):2599–606.Google Scholar
- 54.Duan QY, Gupta VK, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl. 1993;76(3):501–21.Google Scholar
- 55.Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13.Google Scholar
- 56.Shanks RA, Amarasinghe G. Crystallisation of blends of LLDPE with branched VLDPE. Polymer. 2000;41(12):4579–87.Google Scholar
- 57.An Q, Qi S, Zhou W. Thermal, electrical, and mechanical properties of Si3N4 filled LLDPE composite. Polym Compos. 2009;30(7):866–71.Google Scholar
- 58.Comesaña R, Gómez MA, Álvarez MA, Eguía P. Thermal lag analysis on a simulated TGA-DSC device. Thermochim Acta. 2012;547:13–21.Google Scholar
- 59.Lázaro D, Lázaro M, Alonso A, Alvear D. Effects of boundary conditions variation on chemical reactions during STA measurements. Proceedings of the International Conference Research and advanced Technology in fire Safety. University of Cantabria. 2017.Google Scholar
- 60.Matala A. Methods and applications of pyrolysis modelling for polymeric materials. Espoo: VTT Technical Research Centre of Finland; 2013.Google Scholar
- 61.Cardarelli F. Materials handbook: a concise desktop reference. Berlin: Springer; 2008.Google Scholar