Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 4, pp 2703–2713 | Cite as

LLDPE kinetic properties estimation combining thermogravimetry and differential scanning calorimetry as optimization targets

  • Alain AlonsoEmail author
  • Mariano Lázaro
  • Pedro Lázaro
  • David Lázaro
  • Daniel Alvear


Thermal analysis techniques play a crucial role to characterize solid-phase thermal decomposition, since it provides information about how mass is lost (thermal gravimetric analysis) and energy released [differential scanning calorimetry (DSC)]. However, most of the input thermal parameters and kinetic properties to be used in fire computer modelling cannot be obtained directly from those tests. Early works looked forward achieving those parameters employing indirect fitting methods, which enable the user to obtain a set of parameters capable of simulating accurately the mass loss curve (TG) or its derivative (DTG). This work aims to study the possibility of adding the energy released as a new target in the process, applying the analysis to linear low-density polyethylene. Results obtained in the present work reveal the major challenge of getting a set of parameters that can also fit DSC curve. The level of accuracy of the fitting to TG curve is higher than to DSC curve. This fact increases the value of the errors when both curves are used as targets to approach. As a result, this paper includes an alternative to consider the effects of the DSC curve.


Thermal analysis Thermal decomposition Fire computer models Optimization methods LLDPE 

List of symbols


Pre-exponential factor (s−1)


Activation energy (kJ kmol−1)


Reaction order


Heat of reaction (kJ kg−1)


Reaction rate at temperature T


Temperature (°C)


Density (kg m−3)


Specific heat (kJ kg−1 K−1)


Conductivity (W m−1 K−1)




Absorption coefficient (m−1)


Quotient between density of the material at temperature T and the initial density


Reaction rate (kg s−1)

\(v_{{{\text{si}}^\prime {\text{j}}}}\)

Yield produced by the reaction i

\(r_{{{\text{i}}^\prime {\text{j}}}}\)

Residue produced by the reaction i


Coefficient of the conversion factor of reactant/-


Thermogravimetric analysis


Simultaneous thermal analysis


Derivative thermogravimetric analysis


Mass loss rate


Differential scanning calorimetry


Fire Propagation Apparatus


Reacting material


Submaterial generated as the product of the reaction


Fuel gas released by the reaction


Non-burning gas released by the reaction


Residue produced by the reaction


Amount of submaterial produced


Amount of fuel gas released


Amount of non-burning gas released


Amount of residue produced


Error between experimental and simulated curves


Influence of the TG curve over global error


Influence of the DSC curve over global error



The authors would like to thank to the Consejo de Seguridad Nuclear for the cooperation and co-financing the project “Simulation of fires in nuclear power plants” and to CAFESTO Project funded by the Spanish Ministry of Science, Innovation and Universities and the Spanish State Research Agency through public–private partnerships (Retos Colaboración 2017 call, ref RTC-2017-6066-8) co-funded by ERDF under the objective “Strengthening research, technological development and innovation”.


  1. 1.
    Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355(1–2):35–42.Google Scholar
  2. 2.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.Google Scholar
  3. 3.
    Laidler KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61(6):494.Google Scholar
  4. 4.
    Lautenberger C, Fernandez-Pello C. Generalized pyrolysis model for combustible solids. Fire Saf J. 2009;44(6):819–39.Google Scholar
  5. 5.
    Stoliarov S, Lyon R. Thermo-kinetic model of burning for pyrolyzing materials. Fire Saf Sci. 2008;9:1141–52.Google Scholar
  6. 6.
    Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst. 2011;33(2):2599–606.Google Scholar
  7. 7.
    Snegirev AY, Talalov VA, Stepanov VV, Harris JN. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J. 2013;59:132–50.Google Scholar
  8. 8.
    McGrattan K, Hostikka S, McDermott R, Floyd J, Vanella M. Fire Dynamics simulator technical reference Guide Vol.1. NIST Special Publication 1018-1. Sixth Edition. 2018.Google Scholar
  9. 9.
    Rotaru A, Goşa M, Rotaru P. Computational thermal and kinetic analysis. J Therm Anal Calorim. 2008;94(2):367–71.Google Scholar
  10. 10.
    Rotaru A, Goşa M. Computational thermal and kinetic analysis. J Therm Anal Calorim. 2009;97(2):421–6.Google Scholar
  11. 11.
    Haines PJ. Principles of thermal analysis and calorimetry. R Soc Chem. 2002.Google Scholar
  12. 12.
    Erceg M, Krešić I, Vrandečić NS, Jakić M. Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide). J Therm Anal Calorim. 2017;131(1):325–34.Google Scholar
  13. 13.
    Liu J, Song D, Guan H. Isothermal kinetics approach to investigating the oxidation process of red phosphorus in air. J Therm Anal Calorim. 2017;128(3):1801–10.Google Scholar
  14. 14.
    Agarwal G, Liu G, Lattimer B. Pyrolysis and oxidation of cardboard. Fire Saf Sci. 2014;11:124–37.Google Scholar
  15. 15.
    Roduit B. Computational aspects of kinetic analysis. Thermochim Acta. 2000;355(1–2):171–80.Google Scholar
  16. 16.
    Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2018;128(1):335–48.Google Scholar
  17. 17.
    Marian E, Tita B, Tita IC, Jurca T, Vicas L. Thermal behaviour and kinetic study of amygdalin. J Therm Anal Calorim. 2018;134(1):765–72.Google Scholar
  18. 18.
    Salmani M, Alamdari EK, Firoozi S. Isoconversional analysis of thermal dissociation kinetics of hematite in air and inert atmospheres. J Therm Anal Calorim. 2017;128(3):1385–90.Google Scholar
  19. 19.
    Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsanger B, Spitzer D, Moulard H, Dilhan D. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93(1):143–52.Google Scholar
  20. 20.
    Wang Z, Wei R, Ning X, Xie T, Wang J. Thermal degradation properties of LDPE insulation for new and aged fine wires. J Therm Anal Calorim. 2018. Scholar
  21. 21.
    Chen R, Xu X, Zhang Y, Lo S, Lu S. Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic. Appl Therm Eng. 2018;136:484–91.Google Scholar
  22. 22.
    Ferreiro AI, Rabaçal M, Costa M. A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues. Energy Convers Manag. 2016;125:290–300.Google Scholar
  23. 23.
    Hasalová L, Ira J, Jahoda M. Practical observations on the use of Shuffled Complex Evolution (SCE) algorithm for kinetic parameters estimation in pyrolysis modeling. Fire Saf J. 2016;80:71–82.Google Scholar
  24. 24.
    Lautenberger C, Fernandez-Pello C. Optimization algorithms for material pyrolysis property estimation. Fire Saf Sci. 2011;10:751–64.Google Scholar
  25. 25.
    Rein G, Lautenberger C, Fernandez-Pello C, Torero JL, Urban DL. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame. 2016;146(1–2):95–108.Google Scholar
  26. 26.
    Capote J, Alvear D, Abreu O, Lazaro M, Puente E. Pyrolysis characterization of a lineal low density polyethylene. Fire Saf Sci. 2011;10:877–88.Google Scholar
  27. 27.
    Lautenberger C, Rein G, Fernandez-Pello C. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J. 2006;41(3):204–14.Google Scholar
  28. 28.
    Webster RD. Pyrolysis model parameter optimization using a customized stochastic hill—climber algorithm and bench-scale fire test data. MS Thesis, Department of Fire Protection Engineering, University of Maryland. 2009.Google Scholar
  29. 29.
    Stoliarov SI, Walters RN. Determination of the heats of gasification of polymers using differential scanning calorimetry. Polym Degrad Stab. 2008;93(2):422–7.Google Scholar
  30. 30.
    Lautenberger C, Kim E, Dembsey N, Fernandez-Pello C. The role of decomposition kinetics in pyrolysis modeling—application to a fire retardant polyester composite. Fire Saf Sci. 2008;9:1201–12.Google Scholar
  31. 31.
    Li J, Stoliarov SI. Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers. Combust Flame. 2013;160(7):1287–97.Google Scholar
  32. 32.
    Li J, Stoliarov SI. Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers. Polym Degrad Stab. 2014;106:2–15.Google Scholar
  33. 33.
    Stoliarov SI, Li J. Parameterization and validation of pyrolysis models for polymeric materials. Fire Technol. 2016;52(1):79–91.Google Scholar
  34. 34.
    Li J, Gong J, Stoliarov SI. Development of pyrolysis models for charring polymers. Polym Degrad Stab. 2015;115:138–52.Google Scholar
  35. 35.
    McKinnon MB, Stoliarov SI, Witkowski A. Development of a pyrolysis model for corrugated cardboard. Combust Flame. 2013;160(11):2595–607.Google Scholar
  36. 36.
    Li KY, Pau DSW, Hou YN, Ji J. Modeling pyrolysis of charring materials: determining kinetic properties and heat of pyrolysis of medium density fiberboard. Ind Eng Chem Res. 2013;53(1):141–9.Google Scholar
  37. 37.
    Alonso A, Puente E, Lázaro P, Lázaro D, Alvear D. Experimental review of oxygen content at mixing layer in cone calorimeter. J Therm Anal Calorim. 2017;129(2):639–54.Google Scholar
  38. 38.
    ASTM-E1131-08. Standard Test Method for compositional analysis by thermogravimetry. ASTM International. 2014.Google Scholar
  39. 39.
    Zong R, Wang Z, Liu N, Hu Y, Liao G. Thermal degradation kinetics of polyethylene and silane-crosslinked polyethylene. J Appl Polym Sci. 2005;98(3):1172–9.Google Scholar
  40. 40.
    Al-Salem SM, Bumajdad A, Khan AR, Sharma BK, Chandrasekaran SR, Al-Turki FA, Al-Dhafeeri AT. Non-isothermal degradation kinetics of virgin linear low density polyethylene (LLDPE) and biodegradable polymer blends. J Polym Res. 2018;25(5):111. Scholar
  41. 41.
    Dollimore D, Tong P, Alexander KS. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim Acta. 1996;282–283:13–27.Google Scholar
  42. 42.
    Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromol Chem Phys. 2001;202(6):775–84.Google Scholar
  43. 43.
    Aboulkas A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag. 2010;51(7):1363–9.Google Scholar
  44. 44.
    Marcilla A, Beltrán M. Kinetic study of the thermal decomposition of polystyrene and polyethylene-vinyl acetate graft copolymers by thermogravimetric analysis. Polym Degrad Stab. 1995;50(1):117–24.Google Scholar
  45. 45.
    Lázaro D, Puente E, Lázaro M, Alvear D. Characterization of polyethylene decomposition reactions using the TG curve. IRECHE. 2014;6(1):77–82.Google Scholar
  46. 46.
    Li K-Y, Huang X, Fleischmann C, Rein G, Ji J. Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy Fuels. 2014;28(9):6130–9.Google Scholar
  47. 47.
    Ding Y, Wang C, Chaos M, Chen R, Lu S. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution. Bioresour Technol. 2016;200:658–65.PubMedGoogle Scholar
  48. 48.
    Duan Q, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res. 1992;28(4):1015–31.Google Scholar
  49. 49.
    Jiang Y, Gong S. Bus holding strategy based on shuffled complex evolution method. Front Comput Sci. 2012;6(4):462–8.Google Scholar
  50. 50.
    Chen Z, Liu L, Li L, Li H. A two-stage model for project optimization in transportation infrastructure management system. Math. Probl. Eng. 2014;1–8.Google Scholar
  51. 51.
    Vrugt JA, Gupta HV, Bouten W, Sorooshian S. A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res. 2003;39(8):1201. Scholar
  52. 52.
    Van Griensven A, Bauwens W. Multiobjective autocalibration for semidistributed water quality models. Water Resour Res. 2013;39(12):1348. Scholar
  53. 53.
    Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst. 2011;33(2):2599–606.Google Scholar
  54. 54.
    Duan QY, Gupta VK, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl. 1993;76(3):501–21.Google Scholar
  55. 55.
    Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13.Google Scholar
  56. 56.
    Shanks RA, Amarasinghe G. Crystallisation of blends of LLDPE with branched VLDPE. Polymer. 2000;41(12):4579–87.Google Scholar
  57. 57.
    An Q, Qi S, Zhou W. Thermal, electrical, and mechanical properties of Si3N4 filled LLDPE composite. Polym Compos. 2009;30(7):866–71.Google Scholar
  58. 58.
    Comesaña R, Gómez MA, Álvarez MA, Eguía P. Thermal lag analysis on a simulated TGA-DSC device. Thermochim Acta. 2012;547:13–21.Google Scholar
  59. 59.
    Lázaro D, Lázaro M, Alonso A, Alvear D. Effects of boundary conditions variation on chemical reactions during STA measurements. Proceedings of the International Conference Research and advanced Technology in fire Safety. University of Cantabria. 2017.Google Scholar
  60. 60.
    Matala A. Methods and applications of pyrolysis modelling for polymeric materials. Espoo: VTT Technical Research Centre of Finland; 2013.Google Scholar
  61. 61.
    Cardarelli F. Materials handbook: a concise desktop reference. Berlin: Springer; 2008.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.GIDAI, University of CantabriaSantanderSpain

Personalised recommendations