Advertisement

Thermal and rheological behavior of non-nutritive sweeteners

  • Naienne da S. Santana
  • Michelle G. Mothé
  • Cheila G. MothéEmail author
Article
  • 6 Downloads

Abstract

The prevalence of obesity and diseases related to the high consumption of sugars has resulted in a high demand for sugar substitutes. Non-nutritive sweeteners have been highlighted in the market by their potential for moderating energy and sugar consumption, maintaining the palatability of the diet and its vital importance for people with low-calorie and diabetic diets. Aspartame, saccharin, steviol glycosides and sucralose are the most prominent sweeteners in the global market in terms of consumption. Since tabletop sweeteners are one of their main uses, this study aimed to evaluate the thermal and rheological properties of commercial samples with aspartame, saccharin, steviol glycosides and sucralose. The analytical thermal study was performed for all samples by TG/DTG, DTA and DSC. The results of thermal analysis showed that the sample containing steviol glycosides had a higher thermal stability, with an initial decomposition temperature about 137 °C and lower residue content. This sample also needed more energy to decompose, as shown in the DSC curve. The rheological data showed that all samples presented a viscoelastic behavior in the frequency range evaluated. Also elastic modulus was higher than storage modulus from 0.01 to 10 Hz for all samples studied.

Keywords

Non-nutritive sweeteners Thermal analysis Rheology DSC 

Notes

Acknowledgements

The authors would like to thank the Brazilian Council for Scientific and Technological Development (CNPq) and Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for their financial support. The authors also express gratitude to Thermal Analysis RJ Professor Ivo Giolito Laboratory and Leni Leite Rheology Laboratory.

References

  1. 1.
    WHO. Guideline: sugars intake for adults and children. In: World Health Organization. 2015. http://apps.who.int/iris/bitstream/handle/10665/149782/9789241549028_eng.pdf?sequence=1. Accessed 14 Jan 2019.
  2. 2.
    WHO. Obesity and overweight. In: World Health Organization. 2018. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 14 Jan 2019.
  3. 3.
    Basu S, Mckee M, Galea G, Stuckler D. Relationship of soft drink consumption to global overweight, obesity, and diabetes: a cross-national analysis of 75 countries. Am J Public Health. 2013;103:2071–7.CrossRefGoogle Scholar
  4. 4.
    Popkin BM, Hawkes C. Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 2016.  https://doi.org/10.1016/s2213-8587(15)00419-2.Google Scholar
  5. 5.
    Tasevska N, Jiao L, Cross AJ, Kipnis V, Subar AF, Hollenbeck A, Schatzkin A, Potischman N. Sugars in diet and risk of cancer in the NIH-AARP Diet and Health Study. Int J Cancer. 2012;130:159–69.CrossRefGoogle Scholar
  6. 6.
    Popkin BM. Global changes in diet and activity patterns as drivers of the nutrition transition. Nestle Nutr Workshop Ser Pediatr Program. 2009;63:1–14.CrossRefGoogle Scholar
  7. 7.
    Mooradian AD, Smith M, Tokuda M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: a narrative review. Clin Nutr ESPEN. 2017;18:1–8.CrossRefGoogle Scholar
  8. 8.
    IHS Markit. High-intensity sweetener market both sweet and sour as western consumers shun artificial sweeteners, but demand remains strong in Asia. In: IHS Markit. 2017. https://news.ihsmarkit.com/press-release/country-industry-forecasting-media/high-intensity-sweetener-market-both-sweet-and-sour. Accessed 14 Jan 2019.
  9. 9.
    Carocho M, Morales P, Ferreira ICFR. Sweeteners as food additives in the XXI century: a review of what is known, and what is to come. Food Chem Toxicol. 2017;107:302–17.CrossRefGoogle Scholar
  10. 10.
    Mattes RD, Popkin BM. Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr. 2009;89:1–14.CrossRefGoogle Scholar
  11. 11.
    Magnuson BA, Burdock GA, Doull J, Kroes RM, Marsh GM, Pariza MW, Spencer PS, Waddell WJ, Walker R, Williams GM. Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Crit Rev Toxicol. 2007.  https://doi.org/10.1080/10408440701516184.Google Scholar
  12. 12.
    Kroger M, Meister K, Kava R. Low-calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci Food Saf. 2006;5:35–47.CrossRefGoogle Scholar
  13. 13.
    Shankar P, Ahuja S, Sriram K. Non-nutritive sweeteners: review and update. Nutrition. 2013;29:1293–9.CrossRefGoogle Scholar
  14. 14.
    Mordor Intelligence. Stevia market—growth, trends, and forecast (2018–2023). In: Mordor Intelligence 2018. https://www.mordorintelligence.com/industry-reports/stevia-market. Accessed 14 Jan 2019.
  15. 15.
    Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012;132:1121–32.CrossRefGoogle Scholar
  16. 16.
    Goyal SK, Samsher Goyal RK. Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr. 2010;61:1–10.CrossRefGoogle Scholar
  17. 17.
    WHO, Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). In: World Health Organization. 2018. http://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx?fc=66. Accessed 14 Jan 2019.
  18. 18.
    Klug C, Lipinski GWR. Acesulfame K. In: O’Donnell K, Kearsley MW, editors. Sweeteners and sugar alternatives in food technology. Oxford: Wiley-Blackwell; 2012. p. 93–112.Google Scholar
  19. 19.
    Roos YH. Thermal analysis, state transitions and food quality. J Therm Anal Calorim. 2003;71:193–9.CrossRefGoogle Scholar
  20. 20.
    Medina DAV, Ferreira APG, Cavalheiro ETG. Polymorphism and thermal behavior of sodium cyclamate. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08037-7.Google Scholar
  21. 21.
    Mothé CG, Azevedo AD. Análise Térmica de Materiais. São Paulo: Artliber; 2009.Google Scholar
  22. 22.
    Petković M, Seres Z, Pajin B, Banjac V. Thermal decomposition of maltitol spreads. J Therm Anal Calorim. 2014;177:277–84.CrossRefGoogle Scholar
  23. 23.
    Tabilo-Munizaga G, Barbosa-Cánovas GV. Rheology for the food industry. J Food Eng. 2005;67:147–56.CrossRefGoogle Scholar
  24. 24.
    Leung SS, Padden BE, Munson EJ, Grant DJ. Solid-state characterization of two polymorphs of aspartame hemihydrate. J Pharm Sci. 1998;87:501–7.CrossRefGoogle Scholar
  25. 25.
    Carvalho LC, Segato MP, Nunes RS, Novak C, Cavalheiro ETG. Thermoanalytical studies of some sweeteners. J Therm Anal Calorim. 2009;97:359–65.CrossRefGoogle Scholar
  26. 26.
    Guguta C, Meekes H, De Gelder R. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame. Cryst Growth Des. 2006;6:2686–92.CrossRefGoogle Scholar
  27. 27.
    Castro-Cabado M, Parra-Ruiz FJ, Casado AL, San Román J. Thermal crosslinking of maltodextrin and citric acid. Methodology to control the polycondensation reaction under processing conditions. Polym Polym Compos. 2016;24:643–54.Google Scholar
  28. 28.
    Raemy A, Schweizer TF. Thermal behaviour of carbohydrates studied by heat flow calorimetry. J Therm Anal. 1983;28:95–108.CrossRefGoogle Scholar
  29. 29.
    Cheng YD, Lin SY. Isothermal Fourier transform infrared microspectrosopic studies on the stability kinetics of solid-state intramolecular cyclization of aspartame sweetener. J Agric Food Chem. 2000;48:631–5.CrossRefGoogle Scholar
  30. 30.
    Hurtta M, Pitkänen I, Knuutinen J. Melting behaviour of D-sucrose, d-glucose and d-fructose. Carbohydr Res. 2004;339:2267–73.CrossRefGoogle Scholar
  31. 31.
    Bernal C, Couto AB, Breviglieri ST, Cavalheiro ETG. Influence of some experimental parameters on the results of differential scanning calorimetry—DSC. Quimica Nova. 2002.  https://doi.org/10.1590/s0100-40422002000500023.Google Scholar
  32. 32.
    Morais LC, Dweck J, Valenzuela-Diaz FR, Büchler PM. Characterization of lactose and derived products in dairy product industry effluents processing. J Therm Anal Calorim. 2005;82:315–8.CrossRefGoogle Scholar
  33. 33.
    Listiohadi Y, Hourigan JA, Sleigh RW, Steele RJ. Thermal analysis of amorphous lactose and α-lactose monohydrate. Dairy Sci Technol. 2009;89:43–67.CrossRefGoogle Scholar
  34. 34.
    Chen J, Wang J, Li R, Lu A, Li Y. Thermal and X-ray diffraction analysis of lactose polymorph. Procedia Eng. 2015;102:372–8.CrossRefGoogle Scholar
  35. 35.
    Carvalho LC. Estudos termoanalíticos dos edulcorantes acessulfame-K, aspartame, ciclamato, esteviosídeo e sacarina. Dissertation; 2007. University of São Paulo, Brasil.Google Scholar
  36. 36.
    Oliveira DND, De Menezes M, Catharino RR. Thermal degradation of sucralose: a combination of analytical methods to determine stability and chlorinated byproducts. Sci Rep. 2015;5:1–5.Google Scholar
  37. 37.
    Mothe CG, de Freitas JS. Lifetime prediction and kinetic parameters of thermal decomposition of cashew gum by thermal analysis. J Therm Anal Calorim. 2018;131:397.  https://doi.org/10.1007/s10973-017-6844-9.CrossRefGoogle Scholar
  38. 38.
    Mothe MG, Viana LM, Mothe CG. Thermal property study of keratin from industrial residue by extraction, processing and application. J Therm Anal Calorim. 2018;131:417–26.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Naienne da S. Santana
    • 1
  • Michelle G. Mothé
    • 1
  • Cheila G. Mothé
    • 1
    Email author
  1. 1.School of ChemistryFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations