Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 6, pp 4453–4461 | Cite as

Thermal decomposition of inclusion compounds and metal–organic frameworks on the basis of heterometallic complex [Li2Zn2(bpdc)3]

  • Vladimir LogvinenkoEmail author
  • Aleksandr Sapianik
  • Denis Pishchur
  • Vladimir Fedin
Article
  • 93 Downloads

Abstract

Metal–organic frameworks (MOFs) have promising practical applications in gas storage, separation and purification and catalysis. The standard process for MOF production begins with the synthesis of the inclusion compound. The molecules of the organic solvent used are caught in the channels and caves of the MOF structure. These primary inclusion guest molecules are excluded further by the weak heating or by the evacuation. The thermal stability of the primary inclusion compounds (i.e., the ease of removal of the guest molecules) must be connected both with the structure of the empty (guest free) frameworks and with the size of the guest molecules. We investigate a series of inclusion compounds: [Li2Zn2(bpdc)3(dabco)]·9DMF·4H2O, [{LiZn}2(bpdc)3(dma)4]·3DMA·H2O and [{LiZn}2(bpdc)3(nmp)4]·4NMP (bpdc2− = C14H8O42− anion, dma = C4H9NO, nmp = C5H9NO, dmf = C3H7NO and dabco = C6H12N2) for the study of the correlation between their kinetic stability and the framework and guest molecule properties. Thermodynamic properties were studied using differential scanning calorimeter Netzsch DSC 204 F1 Phoenix. Thermogravimetric measurements were carried out on a Netzsch thermal analyzer TG 209 F1. Thermogravimetric curves are used for the kinetic studies. Kinetic parameters of decomposition are estimated within the approaches of non-isothermal kinetics (“model-free” kinetics and nonlinear regression methods), with the computer program Netzsch Thermokinetics 2. All guest-free frameworks turned out to be the unstable phases; the peculiarities of the thermal decomposition of the inclusion compounds under these circumstances are considered.

Keywords

Inclusion compounds Kinetic stability Metal–organic frameworks Non-isothermal kinetics 

Notes

Acknowledgements

The authors thank the Russian Foundation for Basic Research for the financial support (Grant No. 17–53–16015).

Supplementary material

10973_2019_8173_MOESM1_ESM.doc (302 kb)
Supplementary material 1 (DOC 301 kb)

References

  1. 1.
    Karami K, Naeini NH, Eigner V, Dusek M, Lipkowski J, Herves P, Tavako H. Palladium complexes with 3-phenylpropylamine ligands: synthesis, structures, theoretical studies and application in the aerobic oxidation of alcohols as heterogeneous catalysts. RSC Adv. 2015;5:102424–35.  https://doi.org/10.1039/c5ra17249g.CrossRefGoogle Scholar
  2. 2.
    Karami K, Hashemi S, Lipkowski J, Mardani F, Momtazi-borojeni AA, Lighvan ZM. Synthesis, characterization and biological activities of two novel orthopalladated complexes: interactions with DNA and bovine serum albumin, antitumour activity and molecular docking studies. Appl Organomet Chem. 2017;31:e3740.  https://doi.org/10.1002/aoc.3740.CrossRefGoogle Scholar
  3. 3.
    Karami K, Alinaghi M, Amirghofran Z, Lipkowski J, Momtazi-borojenide AA. A saccharinate-bridged palladacyclic dimer with a Pd–Pd bond: experimental and molecular docking studies of the interaction with DNA and BSA and in vitro cytotoxicity against human cancer cell lines. New J Chem. 2018;42:574–86.  https://doi.org/10.1039/c7nj03138f.CrossRefGoogle Scholar
  4. 4.
    Dağlı O, AliKöse D, İçten O, AlpAvc G, Şahin O. The mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with coumarilic acid/1,10-phenantroline. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7773-y.CrossRefGoogle Scholar
  5. 5.
    Vlaicu ID, Olar R, Scăeţeanu GV, Silvestro L, Maurer M, Stănică N, Badea M. Thermal, spectral and biological investigation of new nickel complexes with imidazole derivatives. J Therm Anal Calorim. 2018;134:503–12.  https://doi.org/10.1007/s10973-018-7133-y.CrossRefGoogle Scholar
  6. 6.
    Świderski G, Wilczewska AZ, Świsłocka R, Kalinowska M, Lewandowski W. Spectroscopic (IR, Raman, UV–Vis) study and thermal analysis of 3d-metal complexes with 4- imidazolecarboxylic acid. J Therm Anal Calorim. 2018;134:513–25.  https://doi.org/10.1007/s10973-018-7524-0.CrossRefGoogle Scholar
  7. 7.
    Magyari J, Holló BB, Rodić MV, Szilágyi IM, Szécsényi KM. Synthesis and characterization of diazine-ring containing hydrazones and their Zn(II) complexes. J Therm Anal Calorim. 2018;133:443–52.  https://doi.org/10.1007/s10973-017-6908-x.CrossRefGoogle Scholar
  8. 8.
    Jaćimović Z, Kosović M, Kastratović V, Holló BB, Szécsényi KM, Szilágyi IM, Latinović N, Vojinović-Ješić LV, Rodić M. Synthesis and characterization of copper, nickel, cobalt, zinc complexes with 4-nitro-3-pyrazolecarboxylic acid ligand. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7229-4.CrossRefGoogle Scholar
  9. 9.
    Xavier TT, deGois EP, Sarto LE, deAlmeida ET. Thermal behavior study of palladium(II) complexes containing the iminic ligand N, N′-bis(3,4-dimethoxybenzaldehyde) ethane-1,2-diamine. J Therm Anal Calorim. 2018;134:1829–37.  https://doi.org/10.1007/s10973-018-7429-y.CrossRefGoogle Scholar
  10. 10.
    Diamantis SA, Margariti A, Pournara AD, Papaefstathiou GS, Manos MJ, Lazarides T. Luminescent metal–organic frameworks as chemical sensors: common pitfalls and proposed best practicees. Inorg Chem Front. 2018;5:1493–511.  https://doi.org/10.1039/C8QI00090E.CrossRefGoogle Scholar
  11. 11.
    Peller M, Böll K, Zimpel A, Wuttke S. Metal-organic framework nanoparticles for magnetic resonance imaging. Inorg Chem Front. 2018;5:1760–79.  https://doi.org/10.1039/C8QI00149A.CrossRefGoogle Scholar
  12. 12.
    Gheorghe A, Tepaske MA, Tanase S. Homochiral metal–organic frameworks as heterogeneous catalysis. Inorg Chem Front. 2018;5:1512–23.  https://doi.org/10.1039/C8QI00063H.CrossRefGoogle Scholar
  13. 13.
    Mayo RA, Sullivan DJ, Fillion TAP, Kycia SW, Soldatov DV, Preuss KE. Reversible crystal-to-crystal chiral resolution: making/breaking non-bonding S···O interactions. Chem Commun. 2017;53:3964–6.  https://doi.org/10.1039/C7CC00907K.CrossRefGoogle Scholar
  14. 14.
    Okeke EB, Soldatov DV. Coordination and inclusion compounds formed by addition of quinoline (Q) or isoquinoline (Iq) to a metal(II) dibenzoylmethanate (Co, Ni, Zn, Cd). Composition, structure and thermal dissociation properties. J Therm Anal Calorim. 2010;100:801–10.  https://doi.org/10.1007/s10973-010-0689-9.CrossRefGoogle Scholar
  15. 15.
    Kleist W, Maciejewski M, Baiker A. MOF-5 based mixed-linker metal–organic frameworks: synthesis, thermal stability and catalytic application. Thermochim Acta. 2010;499:71–8.  https://doi.org/10.1016/j.tca.2009.11.004.CrossRefGoogle Scholar
  16. 16.
    Lee CH, Soldatov DV, Tzeng CH, Lai LL, Lu KL. Design of a peripheral building block for H-bonded dendritic frameworks and analysis of the void space in the bulk dendrimers. Sci Rep. 2017.  https://doi.org/10.1038/s41598-017-03684-y.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev. 2014;43:6141–72.  https://doi.org/10.1039/C4CS00135.CrossRefPubMedGoogle Scholar
  18. 18.
    Farha OK, Hupp JT. Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc Chem Res. 2010;43:1166–75.  https://doi.org/10.1021/ar1000617.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang Z, Zhao Y, Gong O, Li Z, Li J. MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. Chem Commun. 2013;49:653–61.  https://doi.org/10.1039/C2CC35561B.CrossRefGoogle Scholar
  20. 20.
    Bae Y-S, Snurr RQ. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Ed. 2011;50:11586–96.  https://doi.org/10.1002/anie.201101891.CrossRefGoogle Scholar
  21. 21.
    Tranchemontagne DJ, Park KS, Furukawa H, Eckert J, Knobler CB, Yaghi OM. Hydrogen storage in new metal–organic frameworks. J Phys Chem C. 2012;116:13143–51.  https://doi.org/10.1021/jp302356q.CrossRefGoogle Scholar
  22. 22.
    Langmi HW, Ren J, North B, Mathe M, Bessarabov D. Hydrogen storage in metal–organic frameworks: a review. Electrochim Acta. 2014;128:368–92.  https://doi.org/10.1016/j.electacta.2013.10.190.CrossRefGoogle Scholar
  23. 23.
    Yu Y, Ren Y, Shen W, Deng H, Gao Z. Applications of metal–organic frameworks as stationary phases in chromatography. TrAC (Trends Anal Chem). 2013;50:33–41.  https://doi.org/10.1016/j.trac.2013.04.014.CrossRefGoogle Scholar
  24. 24.
    Van de Voorde B, Bueken B, Denayer J, De Vos D. Adsorptive separation on metal–organic frameworks in the liquid phase. Chem Soc Rev. 2014;43:5766–88.  https://doi.org/10.1039/C4CS00006D.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev. 2014;43:6011–61.  https://doi.org/10.1039/C4CS00094C.CrossRefPubMedGoogle Scholar
  26. 26.
    Liu Y, Xuan W, Cui Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater. 2010;22:4112–35.  https://doi.org/10.1002/adma.201000197.CrossRefPubMedGoogle Scholar
  27. 27.
    Hu Z, Deibert BJ, Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev. 2014;43:5815–40.  https://doi.org/10.1039/C4CS00010B.CrossRefPubMedGoogle Scholar
  28. 28.
    Pramanik S, Hu Z, Zhang X, Zheng C, Kelly S, Li J. A systematic study of fluorescence-based detection of nitroexplosives and other aromatics in the vapor phase by microporous metal-organic frameworks chemistry. Eur J. 2013;19:15964–71.  https://doi.org/10.1002/chem.201301194.CrossRefGoogle Scholar
  29. 29.
    Desai AW, Manna B, Karmakar A, Sahu A, Ghosh SK. A water-stable cationic metal–organic framework as a dual adsorbent of oxoanion pollutants. Angew Chem Int Ed. 2016;55:7811–5.  https://doi.org/10.1002/anie.201600185.CrossRefGoogle Scholar
  30. 30.
    Cunha D, Yahia MB, Hall S, Miller SR, Chevreau H, Elkaïm E, Maurin G, Horcajada P, Serre C. Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks. Chem Mater. 2013;25:2767–76.  https://doi.org/10.1021/cm400798p.CrossRefGoogle Scholar
  31. 31.
    Sun C-Y, Qin C, Wang C-G, Su Z-M, Wang S, Wang X-L, Yang G-S, Shao K-Z, Lan Y-Q, Wang E-B. Chiral nanoporous metal–organic frameworks with high porosity as materials for drug delivery. Adv Mater. 2011;23:5629–32.  https://doi.org/10.1002/adma.201102538.CrossRefPubMedGoogle Scholar
  32. 32.
    Goesten MG, Juan-Alcañiz J, Ramos-Fernandez EV, Gupta KBSS, Stavitski E, van Bekkum H, Gascon J, Kapteijn F. Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal. 2011;281:177–87.  https://doi.org/10.1016/j.jcat.2011.04.015.CrossRefGoogle Scholar
  33. 33.
    Serre C, Mellot-Draznieks C, Surblé S, Audebrand N, Filinchuk Y, Férey G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science. 2007;315:1828–31.  https://doi.org/10.1126/science.1137975.CrossRefPubMedGoogle Scholar
  34. 34.
    Han J, Wang D, Du YH, Xi S, Chen Z, Yin S, Zhou T, Xu R. Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Appl Catal A. 2016;521:83–9.  https://doi.org/10.1016/j.apcata.2015.10.015.CrossRefGoogle Scholar
  35. 35.
    Dyadin YA, Soldatov DV, Logvinenko VA, Lipkovsky J. Contact stabilization of host complex molecules during clathrate formation: the pyridine-zinc nitrate and the pyridine-cadmium nitrate systems. J Coord Chem. 1996;37:63–75.CrossRefGoogle Scholar
  36. 36.
    Sapianik AA, Kiskin MA, Samsonenko DG, Ryadun AA, Dybtsev DN, Fedin VP. Luminescence sensing by coordination polymers derived from a pre-organized heterometallic carboxylic building unit. Polyhedron. 2018;145:147–53.  https://doi.org/10.1016/j.poly.2018.02.007.CrossRefGoogle Scholar
  37. 37.
    Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part 2. Inclusion compounds of layered zinc camphorate, linked by linear N-donor ligands. J Therm Anal Calorim. 2010;100:183–9.CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.CrossRefGoogle Scholar
  40. 40.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  41. 41.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci. 1963;6:183–95.Google Scholar
  42. 42.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.CrossRefGoogle Scholar
  43. 43.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.CrossRefGoogle Scholar
  44. 44.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.Google Scholar
  45. 45.
    Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.CrossRefGoogle Scholar
  46. 46.
    Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data—advantages and limitations. Thermochim Acta. 2002;391:119–27.CrossRefGoogle Scholar
  47. 47.
    Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.CrossRefGoogle Scholar
  48. 48.
    Simon P. Single-step kinetics approximation employing nonarrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.CrossRefGoogle Scholar
  49. 49.
    Simon P. The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.CrossRefGoogle Scholar
  50. 50.
    Borchard HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc. 1957;79:41–6.CrossRefGoogle Scholar
  51. 51.
    Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  52. 52.
    Vyazovkin S, Chrissafis K, Di Lorenzo M-R, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol J-J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  53. 53.
    Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Berlin: Springer; 2015.CrossRefGoogle Scholar
  54. 54.
    Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.CrossRefGoogle Scholar
  55. 55.
    Simon P, Dubaj T, Cibulkova Z. Equivalence of the Arrhenius and non-Arrhenian temperature functions in the temperature range of measurement. J Therm Anal Calorim. 2015;120:231–8.CrossRefGoogle Scholar
  56. 56.
    Sestak J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.CrossRefGoogle Scholar
  57. 57.
    Galwey AK. What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition by thermal analysis? J Therm Anal Calorim. 2006;86:267–86.CrossRefGoogle Scholar
  58. 58.
    Roura P, Farjas J. Analytical solution for the Kissinger equation. J Mater Res. 2009;24:3095–8.CrossRefGoogle Scholar
  59. 59.
    Holba P, Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics (translation from Russian journal). Glass Phys Chem. 2014;40:486–91.CrossRefGoogle Scholar
  60. 60.
    Dubaj T, Cibulková Z, Šimon P. An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression. J Comput Chem. 2015;36:392–8.CrossRefGoogle Scholar
  61. 61.
    Logvinenko V. Stability and reactivity of coordination and inclusion compounds in the reversible processes of thermal dissociation. Thermochim Acta. 1999;340–341:293–9.CrossRefGoogle Scholar
  62. 62.
    Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal. 2007;90:23–30.CrossRefGoogle Scholar
  63. 63.
    Lomovsky O, Bychkov A, Lomovsky I, Logvinenko V, Burdukov A. Mechanochemical production of lignin-containing powder fuels from biotechnical industry waste: a review. Therm Sci. 2015;19:219–29.CrossRefGoogle Scholar
  64. 64.
    Vasilyeva I, Logvinenko V. Contribution of chemical methods to the study of nanostructure of ultrafine and amorphous materials. Solid State Phenom. 2017;257:237–40.CrossRefGoogle Scholar
  65. 65.
    Logvinenko VA, Makotchenko VG, Fedorov VE. Reactivity in combustion process for expanded graphites: influence of dimensional effect. Nanosyst Phys Chem Math. 2016;7:234–43.CrossRefGoogle Scholar
  66. 66.
    Makotchenko VG, Pinakov DV, Logvinenko VA. The influence of dimensional effects on the composition and properties of polydicarbonfluoride. Chem Asian J. 2015;10:1761–7.CrossRefGoogle Scholar
  67. 67.
    Chekhova GN, Pinakov DV, Shubin YuV, Logvinenko VA. Structural rearrangements of the inclusion compound of fluorinated graphite with acetonitrile during isothermal deintercalation. J Therm Anal Calorim. 2017;128:349–55.  https://doi.org/10.1007/s10973-016-5846-3.CrossRefGoogle Scholar
  68. 68.
    Bushuev MB, Pishchur DP, Logvinenko VA, Gatilov YuV, Korolkov IV, Shundrina IK, Nikolaenkova EB, Krivopalov VP. Mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition. Dalton Trans. 2016;45:107–20.CrossRefGoogle Scholar
  69. 69.
    Krisyuk VV, Baidina IA, Kryuchkova NA, Logvinenko VA, Plyusnin PE, Korolkov IV, Zharkova GI, Turgambaeva AE, Igumenov IK. Volatile heterometallics: structural diversity of palladium-lead ß-diketonates and correlation with thermal properties. Dalton Trans. 2017;46:12245–56.  https://doi.org/10.1039/c7dt02843a.CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirsk-90Russia
  2. 2.Novosibirsk State UniversityNovosibirsk-90Russia

Personalised recommendations