Advertisement

Thermal behavior of carboxymethyl cellulose in the presence of polycarboxylic acid crosslinkers

  • G. Priya
  • U. Narendrakumar
  • I. ManjubalaEmail author
Article
  • 18 Downloads

Abstract

Cellulose is the most abundant biopolymer and with different chemical modification products yields excellent properties like high viscosity, hydrophilicity, defoaming, chelating ability, etc. Carboxymethyl cellulose (CMC) is a product of carboxymethylation of cellulose being extensively used in food industry, agriculture, wastewater treatment, pharmacy and medicine. Despite, carboxymethylation lowers the thermal stability of the cellulose. This study focuses on investigating the thermal stability of CMC by crosslinking with polycarboxylic acids such as citric acid and fumaric acid. The crosslinking occurs between the hydroxyl groups of CMC and carboxylic groups of polycarboxylic acids via esterification, as confirmed by the presence of ester bands in FTIR spectra. The decarboxylation temperature of CMC is increased from 548 to 573 K in the crosslinked samples. The glass and crystalline phase transitions of CMC shifted to higher temperatures with the addition of crosslinkers. This suggests that the thermal stability of the CMC can be increased with crosslinking agents maintaining the properties of cellulose which would extend the application of CMC in various other fields.

Keywords

Carboxymethyl cellulose Thermal stability TGA DSC 

Notes

Acknowledgements

The authors thank Vellore Institute of Technology for providing partial financial support from ‘VIT SEED GRANT (RGEMS)’ for carrying out this research work. The authors GP and IM acknowledge the financial support (JRF) from Department of Science and Technology, Science and Engineering Research Board (SERB), Government of India, and are grateful to School of Advanced Sciences, Vellore Institute of Technology for extending their DST-FIST characterization facilities.

References

  1. 1.
    Saddawi A, Jones J, Williams A, Wojtowicz M. Kinetics of the thermal decomposition of biomass. Energy Fuels. 2009;24(2):1274–82.CrossRefGoogle Scholar
  2. 2.
    Agustin MB, Nakatsubo F, Yano H. Improving the thermal stability of wood-based cellulose by esterification. Carbohydr Polym. 2018;192:28–36.CrossRefGoogle Scholar
  3. 3.
    Saba N, Safwan A, Sanyang M, Mohammad F, Pervaiz M, Jawaid M, et al. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol. 2017;102:822–8.CrossRefGoogle Scholar
  4. 4.
    Frone AN, Berlioz S, Chailan J-F, Panaitescu DM. Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr Polym. 2013;91(1):377–84.CrossRefGoogle Scholar
  5. 5.
    Tian M, Qu L, Zhang X, Zhang K, Zhu S, Guo X, et al. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr Polym. 2014;111:456–62.CrossRefGoogle Scholar
  6. 6.
    Baniasad A, Ghorbani M. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles. Int J Biol Macromol. 2016;86:901–6.CrossRefGoogle Scholar
  7. 7.
    de Britto D, Assis OB. Thermal degradation of carboxymethylcellulose in different salty forms. Thermochim Acta. 2009;494(1–2):115–22.CrossRefGoogle Scholar
  8. 8.
    Ahmad N, Wahab R, Al-Omar SY. Thermal decomposition kinetics of sodium carboxymethyl cellulose: model-free methods. Eur J Chem. 2014;5(2):247–51.CrossRefGoogle Scholar
  9. 9.
    Raucci M, Alvarez-Perez M, Demitri C, Giugliano D, De Benedictis V, Sannino A, et al. Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. J Biomed Mater Res, Part A. 2015;103(6):2045–56.CrossRefGoogle Scholar
  10. 10.
    Yadollahi M, Namazi H. Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J Nanopart Res. 2013;15(4):1–9.CrossRefGoogle Scholar
  11. 11.
    Akar E, Altınışık A, Seki Y. Preparation of pH-and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym. 2012;90(4):1634–41.CrossRefGoogle Scholar
  12. 12.
    Dilaver M, Yurdakoc K. Fumaric acid cross-linked carboxymethylcellulose/poly (vinyl alcohol) hydrogels. Polym Bull. 2016;73(10):2661–75.CrossRefGoogle Scholar
  13. 13.
    Gorgieva S, Kokol V. Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr Polym. 2011;85(3):664–73.CrossRefGoogle Scholar
  14. 14.
    Basu P, Repanas A, Chatterjee A, Glasmacher B, NarendraKumar U, Manjubala I. PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Mater Lett. 2017;195:10–3.CrossRefGoogle Scholar
  15. 15.
    Kukrety A, Singh RK, Singh P, Ray SS. Comprehension on the synthesis of carboxymethylcellulose (CMC) utilizing various cellulose rich waste biomass resources. Waste Biomass Valoriz. 2018;9(9):1587–95.CrossRefGoogle Scholar
  16. 16.
    Biswal D, Singh R. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym. 2004;57(4):379–87.CrossRefGoogle Scholar
  17. 17.
    Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018;107(Pt A):678–88.CrossRefGoogle Scholar
  18. 18.
    Nerurkar NL, Elliott DM, Mauck RL. Mechanical design criteria for intervertebral disc tissue engineering. J Biomech. 2010;43(6):1017–30.CrossRefGoogle Scholar
  19. 19.
    Bhattacharya A, Rawlins JW, Ray P. Polymer grafting and crosslinking. Wiley; 2009.Google Scholar
  20. 20.
    Hatakeyama T, Quinn F. Thermal analysis: fundamentals and applications to polymer science, 2nd edn. Chichester: Wiley; 1999.Google Scholar
  21. 21.
    Lin Q, Chang J, Gao M, Ma H. Synthesis of magnetic epichlorohydrin cross-linked carboxymethyl cellulose microspheres and their adsorption behavior for methylene blue. J Environ Sci Health, Part A. 2017;52(2):106–16.CrossRefGoogle Scholar
  22. 22.
    Kono H, Onishi K, Nakamura T. Characterization and bisphenol A adsorption capacity of β-cyclodextrin–carboxymethylcellulose-based hydrogels. Carbohydr Polym. 2013;98(1):784–92.CrossRefGoogle Scholar
  23. 23.
    Nada A, Hassan ML. Thermal behavior of cellulose and some cellulose derivatives. Polym Degrad Stab. 2000;67(1):111–5.CrossRefGoogle Scholar
  24. 24.
    Arrieta M, Fortunati E, Burgos N, Peltzer M, López J, Peponi L. Nanocellulose-based polymeric blends for food packaging applications. In: Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier; 2016. p. 205–52.Google Scholar
  25. 25.
    Fu S, Song P, Liu X. Thermal and flame retardancy properties of thermoplastics/natural fiber biocomposites. In: Advanced high strength natural fibre composites in construction. Elsevier; 2017. p. 479–508.Google Scholar
  26. 26.
    Lee H, Sundaram J, Zhu L, Zhao Y, Mani S. Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohydr Polym. 2018;181:506–13.CrossRefGoogle Scholar
  27. 27.
    Dogsa I, Tomšič M, Orehek J, Benigar E, Jamnik A, Stopar D. Amorphous supramolecular structure of carboxymethyl cellulose in aqueous solution at different pH values as determined by rheology, small angle X-ray and light scattering. Carbohydr Polym. 2014;111:492–504.CrossRefGoogle Scholar
  28. 28.
    Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW. Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci. 2008;107(1):476–86.CrossRefGoogle Scholar
  29. 29.
    El-Sayed S, Mahmoud K, Fatah A, Hassen A. DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Phys B. 2011;406(21):4068–76.CrossRefGoogle Scholar
  30. 30.
    Agustin MB, Nakatsubo F, Yano H. Improved resistance of chemically-modified nanocellulose against thermally-induced depolymerization. Carbohydr Polym. 2017;164:1–7.CrossRefGoogle Scholar
  31. 31.
    Sannino A, Pappadà S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L. Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer. 2005;46(25):11206–12.CrossRefGoogle Scholar
  32. 32.
    Kim J. Thermal characteristics and degradation kinetics of cross-linked carboxymethyl cellulose sodium salt. EJEAFChe. 2007;6:2458–72.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Biosciences, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia
  2. 2.Department of Manufacturing Engineering, School of Mechanical EngineeringVellore Institute of TechnologyVelloreIndia

Personalised recommendations