Advertisement

Calorimetry and thermal analysis in food science

An updated review
  • Alberto SchiraldiEmail author
  • Dimitrios Fessas
Article
  • 46 Downloads

Abstract

Food science is a domain of life science. Applications of thermal analysis and calorimetry (TAC) to food products deal with many investigation targets spanning from the characterization of the systems at molecular and supramolecular level to the description of the microbial metabolism. Food products are multi-phase and multi-component metastable systems where several processes can occur simultaneously during the preparation process and the shelf life. One therefore has to disentangle various contributions to the overall instrumental outputs, using appropriate data treatments and kinetic models, and/or results from other experimental approaches. The paper reports an updated survey of TAC applications to food products through specific examples of data treatments.

Keywords

Food Science Thermal stability Water activity Microbial spoilage Shelf life 

Notes

References

  1. 1.
    Schiraldi A, Lilley TH, Braibanti A, Ollivon M, Cesaro A, Masi P. Calorimetry, thermal analysis and chemical thermodynamics in food science: Report on the panel discussion. Thermochim Acta. 1990;162:253–64.CrossRefGoogle Scholar
  2. 2.
    Applications of calorimetry and thermal-analysis to food systems and processes. Thermochim Acta, 246 (1994) Special Issue, R11-R12, guest Ed. A. Schiraldi.Google Scholar
  3. 3.
    Schiraldi A, Piazza L, Fessas D, Riva M, in Handbook of thermal analysis and calorimetry (1999) chap. 16, R. Kemp Ed., Elsevier Publ., Amsterdam, 829–921.Google Scholar
  4. 4.
    Slade L, Levine H. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Critical Rev Food Sci Nutr. 1991;30:115–360.CrossRefGoogle Scholar
  5. 5.
    Tolstoguzov VB. Some thermodynamic considerations in food formulation. Food Hydrocolloids. 2003;17:1–23.CrossRefGoogle Scholar
  6. 6.
    Bubbles in food, (1999), G.M. Campbell, C. Webb, S.S. Pandiella and K. Nirajan, Eds., Eagan Press Publ.Google Scholar
  7. 7.
    Schiraldi A, Fessas D, Signorelli M. Water activity in biological systems-a review. Pol J Food Nutr Sci. 2012;62:5–13.Google Scholar
  8. 8.
    Zobel HF. Starch crystal transformations and their industrial importance. Starch. 1988;40:1–7.CrossRefGoogle Scholar
  9. 9.
    Hills BP Water management in the design and distribution of quality foods”, (1999) Y.H. Roos, R.B. Leslie and P.J. Lillford Eds., Technomic Publ. Co., Lancaster, Penn., USA, 107-131.Google Scholar
  10. 10.
    Beltonen PS. Mini review: on the elasticity of Wheat gluten. J Cereal Sci. 1999;29:103–7.CrossRefGoogle Scholar
  11. 11.
    Schiraldi A, Piazza L, Riva M. Bread staling: a calorimetric approach. Cereal Chem. 1996;73:32–9.Google Scholar
  12. 12.
    Schiraldi A, Fessas D, Signorelli M, in “Calorimetry in food processing”, G. Kalentuc Ed., IFT Press series (2009), chap 11.Google Scholar
  13. 13.
    Krokida MK, Karathanos VT, Maroulis ZB. Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. J Food Eng. 1998;35:369–80.CrossRefGoogle Scholar
  14. 14.
    Lewicki PP. Design of hot air drying for better foods. Trends Food Sci Technol. 2006;17:153–63.CrossRefGoogle Scholar
  15. 15.
    Pani P, Schiraldi A, Signorelli M, Fessas D. Thermodynamic approach to osmo-dehydration. Food Biophys. 2010;5:177–85.CrossRefGoogle Scholar
  16. 16.
    Roos HY. Water activity and physical state effects on amorphous food stability. J Food Process Preserv. 1993;16:433–47.CrossRefGoogle Scholar
  17. 17.
    Roos HY. Phase transitions in foods. San Diego: Acad. Press Inc.; 1995.Google Scholar
  18. 18.
    H. This, “Molecular Gastronomy: exploring the science of flavors” (2005), ISBN: 023114170X.Google Scholar
  19. 19.
    Larsson H, Eliasson A-C. Phase separation of Wheat flour dough studied by ultracentrifugation and stress relaxation. II. Influence of mixing time, ascorbic acid, and lipids. Cereal Chem. 1996;73:18–31.Google Scholar
  20. 20.
    Fessas D, Signorelli M, Pagani A, Mariotti M, Iametti S, Schiraldi A. Guidelines for buckwheat enriched bread: thermal analysis approach. J Therm Anal Cal. 2008;91:9–16.CrossRefGoogle Scholar
  21. 21.
    Tolstoguzov VB. Foods as dispersed systems. Thermodynamic aspects of composition-property relationships in formulated food. J Therm Anal Cal. 2000;61:397–409.CrossRefGoogle Scholar
  22. 22.
    Piazza L, Masi P. Moisture redistribution throughout the bread loaf during staling and its effects on mechanical properties. Cereal Chem. 1995;72:320–5.Google Scholar
  23. 23.
    Mitchell JR, Fan JT, Blanshard JMV. Bubbles in food (1999), G.M. Campbell, C. Webb, S.S. Pandiella and K. Nirajan, Eds., Eagan Press Publ.Google Scholar
  24. 24.
    Fessas D, Schiraldi A. Texture and staling of wheat bread crumb: effects of water extractable proteins andpentosans’. Thermochim Acta. 1998;323:17–26.CrossRefGoogle Scholar
  25. 25.
    Fessas D, Schiraldi A. Starch Gelatinization Kinetics in Bread Dough. DSC investigations on’simulated’baking processes. J Therm Anal Cal. 2000;61:411–23.CrossRefGoogle Scholar
  26. 26.
    Schiraldi A, Fessas D. Classical and Knudsen thermogravimetry to check states and displacements of water in food systems. J Therm Anal Cal. 2003;71:221–31.Google Scholar
  27. 27.
    Schiraldi A, Piazza L, Brenna O, Vittadini E. Structure and properties of bread dough and crumb. J Therm Anal. 1996;47:1339–60.CrossRefGoogle Scholar
  28. 28.
    Fessas D, Schiraldi A. Water properties in wheat flour dough II: classical and Knudsen thermogravimetry approach. Food Chem. 2005;90:61–8.CrossRefGoogle Scholar
  29. 29.
    Fessas D, Schiraldi A. Water properties in wheat flour dough I: classical thermogravimetry approach. Food Chem. 2001;72:237–44.CrossRefGoogle Scholar
  30. 30.
    Piazza L, Schiraldi A. Correlation between fracture of semi‐sweet hard biscuits and dough viscoelastic properties. J Texture Stud. 1997;28:523–41.CrossRefGoogle Scholar
  31. 31.
    Schiraldi A, Fessas D. Bread staling (2000), P. Chinachoti, Y. Vodovotz, Eds., CRC, Boca Raton, FL, 1–17.Google Scholar
  32. 32.
    Riva M, Fessas D, Schiraldi A. Starch retrogradation in cooked pasta and rice. Cereal Chem. 2000;77:433–8.CrossRefGoogle Scholar
  33. 33.
    Kou Y, Ross EW, Taub LA. Amorphous food and pharmaceutical systems, (2002) H. Levine Ed., The Royal Society of Chemistry, Cambridge, 48–58.Google Scholar
  34. 34.
    Hall L-D, Amin MHH, Evans S, Nott KP, Sun L. Water science for food, health, agriculture and environment, Z. Berk, R.B. Leslie, P.J. Lillford and S. Mizrahi Eds., Technomic Publ., Lancaster, Penn., USA, 255–271.Google Scholar
  35. 35.
    Schiraldi A. Starch and starch containing products: origins - structure, properties and new technologies”, V. Yuryev, A. Cesaro and W. Bergthaller Eds., Nova Science Publishers, (2002) chap 20, 287–296.Google Scholar
  36. 36.
    Vodovotz Y, Vittadini E, Sachleben JR. Use of 1H cross-relaxation nuclear magnetic resonance spectroscopy to probe the changes in bread and its components during aging. Carbohydr Res. 2002;337:147–53.CrossRefGoogle Scholar
  37. 37.
    Schiraldi A, Fessas D, Signorelli M, data presented at ESTAC 9, Kracow, August 27–31, 2006.Google Scholar
  38. 38.
    Yuryev VP, Krivandin AV, Kiseleva VI, Wasserman LA, Genkina NK, Fornal J, Błaszczak W, Schiraldi A. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydr Res. 2004;339:2683–91.CrossRefGoogle Scholar
  39. 39.
    Lii CY, Lee BL. Heating A-, B-, and C-type starches in aqueous sodium chloride: effects of sodium chloride concentration and moisture content on differential scanning calorimetry thermograms. Cereal Chem. 1993;70:188–92.Google Scholar
  40. 40.
    Hedayati S, Shahidi F, Koocheki A, Farahnaky A, Majzoobi M. Physical properties of pregelatinized and granular cold water swelling maize starches at different pH values. Int J Biol Mol. 2016;88:499–504.Google Scholar
  41. 41.
    Wille RL, Lutton ES. Polymorphism of cocoa butter. J Am Oil Chem Soc. 1966;43:491–6.CrossRefGoogle Scholar
  42. 42.
    Fessas D, Signorelli M, Schiraldi A. Polymorphous transitions in cocoa butter: a quantitative DSC study. J Therm Anal Cal. 2005;82:691–702.CrossRefGoogle Scholar
  43. 43.
    Aguilera JM, Michel M, Mayor G. Fat migration in chocolate: diffusion or capillary flow in a particulate solid?—a hypothesis paper. J Food Sci. 2004;69:167–74.CrossRefGoogle Scholar
  44. 44.
    Narine SS, Marangoni AG. Relating structure of fat crystal networks to mechanical properties: a review. Food Res Int. 1999;32:227.CrossRefGoogle Scholar
  45. 45.
    Tolstoguzov VB. Texturising by phase separation. Biotechnol Adv. 2006;24:626–8.CrossRefGoogle Scholar
  46. 46.
    Kamrul HSM, Schiraldi A, Cosio MS, Scampicchio M. Food and ascorbic scavengers of hydrogen peroxide. J Therm Anal Cal. 2016;125:729–37.CrossRefGoogle Scholar
  47. 47.
    Haman N, Ferrentino G, Imperiale S, Scampicchio M. Antioxidant and prooxidant activity of spent coffee extracts by isothermal calorimetry. J Therm Anal Cal. 2018;132:1065–75.CrossRefGoogle Scholar
  48. 48.
    Haman N, Longo E, Schiraldi A, Scampicchio M. Radical scavenging activity of lipophilic antioxidants and extra-virgin olive oil by isothermal calorimetry. Thermochim Acta. 2017;658:1–6.CrossRefGoogle Scholar
  49. 49.
    Haman N, Romano A, Asaduzzaman M, Ferrentino G, Biasioli F, Scampicchio M. A microcalorimetry study on the oxidation of linoleic acid and the control of rancidity. Talanta. 2017;164:407–12.CrossRefGoogle Scholar
  50. 50.
    Labuza TP, McNally L, Gallagher D, Hawkes J, Hurtado F. Stability of intermediate moisture foods. 1. Lipid oxidation. J Food Sci. 1972;37:154–9.CrossRefGoogle Scholar
  51. 51.
    Rahman MS, Labuza TP. Water activity and food preservation, Handbook of Food Preservation, 2nd ed. (2007) M.S. Rahman, Ed., CRC Press, Boca Raton, Florida, USA, 447-476.Google Scholar
  52. 52.
    Schiraldi A. The nature of biological systems as revealed thermal methods“(2004) chap.2, D. Lorinczy Ed., Kluwer Academy Publ., 31.Google Scholar
  53. 53.
    Schiraldi A. Microbial growth and metabolism: modelling and calorimetric characterization. Pure Appl Chem. 1995;67:1873–8.CrossRefGoogle Scholar
  54. 54.
    Fessas D, Schiraldi A. Isothermal calorimetry and microbial growth: beyond modeling. J Therm Anal Calorim. 2017;130:567–72.CrossRefGoogle Scholar
  55. 55.
    Riva M, Fessas D, Franzetti L, Schiraldi A. Calorimetric characterization of different yeast strains in doughs. J Therm Anal Calorim. 1998;52:753–64.CrossRefGoogle Scholar
  56. 56.
    Gardikis K, Signorelli M, Ferrario C, Schiraldi A, Fortina MG, Hatziantoniou S, Demetzos C, Fessas D. Microbial biosensors to monitor the encapsulation effectiveness of Doxorubicin in chimeric advanced drug delivery nano systems: a calorimetric approach. Int J Pharm. 2017;516:178–84.CrossRefGoogle Scholar
  57. 57.
    Baranyi J, Pin C, Ross T. Validating and comparing predictive models. Int J Food Microbiol. 1999;48:159–66.CrossRefGoogle Scholar
  58. 58.
    Buchanan RL, Whiting RC, Damert WC. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 1997;14:313–26.CrossRefGoogle Scholar
  59. 59.
    Peleg M. Advanced quantitative microbiology for food and biosystems: models for predicting growth and inactivation. Boca Raton: CRC Press; 2006.CrossRefGoogle Scholar
  60. 60.
    Peleg M. Microbial survival curves: interpretation, mathematical modeling and utilization. Comments Theor Biol. 2003;8(2003):357–87.CrossRefGoogle Scholar
  61. 61.
    Schiraldi A. Microbial growth in planktonic conditions. Cell Dev Biol 6 (2017) 185,  https://doi.org/10.4172/2168-9296.1000185, and related appendix.
  62. 62.
    Schiraldi A. A self-consistent approach to the lag phase of planktonic microbial cultures. Single Cell Biol. 2017;6:166.  https://doi.org/10.4172/2168-9431.1000166.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MilanMilanItaly
  2. 2.Department of Food Environmental Nutrition SciencesUniversity of MilanMilanItaly

Personalised recommendations