Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 4, pp 1587–1596 | Cite as

Thermal behavior of Ni, Co and Fe succinates embedded in silica matrix

  • Thomas DippongEmail author
  • Erika Andrea Levei
  • Oana Cadar
  • Firuta Goga
  • Dana Toloman
  • Gheorghe Borodi
Article
  • 33 Downloads

Abstract

This paper presents the thermal behavior of Co, Ni and Fe succinates obtained by sol-gel synthesis using Co(II), Ni(II) and Fe(III) nitrates, 1,4-butanediol and tetraethyl orthosilicate as reactants. The thermal analysis revealed the formation of succinates at 413–453 K and their decomposition to ferrites at 503–623 K. The rate constants for the decomposition of succinates to ferrites, calculated using the isotherms at 473, 523, 573 and 623 K, were used to determine the activation energy of each ferrite (NiFe2O4, Ni0.3Co0.7Fe2O4, Ni0.7Co0.3Fe2O4 and CoFe2O4) embedded in the silica matrix. By increasing the Ni content in the mixed Ni–Co ferrites, the activation energy decreases from 13.530 to 1.944 kJ mol−1. The formation and decomposition of succinate precursors and the formation of silica matrix were confirmed by FT-IR spectroscopy, while the formation of CoFe2O4 and NiFe2O4 single-phases embedded in the silica matrix was confirmed by X-ray diffraction analysis. The nanocrystallites size decreases from 31.7 (CoFe2O4) to 18.5 nm (NiFe2O4). The optical band gap of mixed Co–Ni ferrites was significantly higher than that corresponding to CoFe2O4. The photocatalytic activity of the samples was evaluated against Rhodamine B under visible light. All the samples have photocatalytic activities, the best performance being obtained in the case of Ni0.7Co0.3Fe2O4.

Keywords

Thermal decomposition Rate constant Activation energy Nickel–cobalt ferrite Photocatalysis 

Notes

References

  1. 1.
    Maaz K, Kim GH. Single domain limit for NixCo1−xFe2O4 (0 ≤ x ≤ 1) nanoparticles synthesized by coprecipitation route. Mater Chem Phys. 2012;137:359–64.CrossRefGoogle Scholar
  2. 2.
    Shanmugavel T, Gokul Raj S, Rajarajan G, Ramesh Kumar G. Tailoring the structural and magnetic properties and of nickel ferrite by auto combustion method. Procedia Mater Sci. 2014;6:1725–30.CrossRefGoogle Scholar
  3. 3.
    Choi WO, Lee JG, Kang BS, Chae KP. Crystallographic and magnetic properties of nano-sized nickel substituted cobalt ferrites synthesized by the sol–gel method. J Magn. 2014;19:59–63.CrossRefGoogle Scholar
  4. 4.
    Joint Committee on Powder Diffraction Standard, International Center for Diffraction Data. 1999.Google Scholar
  5. 5.
    Dippong T, Levei EA, Cadar O, Goga F, Borodi G, Barbu-Tudoran L. Thermal behavior of CoxFe3−xO4/SiO2 nanocomposites obtained by a modified sol–gel method. J Therm Anal Calorim. 2017;128:39–52.CrossRefGoogle Scholar
  6. 6.
    Dippong T, Levei EA, Borodi G, Goga F, Barbu-Tudoran L. Influence of Co/Fe ratio on the oxide phases in nanoparticles of CoxFe3−xO4. J Therm Anal Calorim. 2015;119:1001–9.CrossRefGoogle Scholar
  7. 7.
    Torkian S, Ghasemi A, Razavi RS. Cation distribution and magnetic analysis of wideband microwave absorptive CoxNi1−xFe2O4 ferrites. Ceram Int. 2017;43:6987–95.CrossRefGoogle Scholar
  8. 8.
    Robertode Freitas M, Lisboa de Gouveia G, José Dalla Costa L, Aparecido de Oliveira AJ, Kiminami RHGA. Microwave assisted combustion synthesis and characterization of nanocrystalline nickel-doped cobalt ferrites. Mater Res. 2016;19:27–32.CrossRefGoogle Scholar
  9. 9.
    Xi G, Xi Y. Effects on magnetic properties of different metal ions substitution cobalt ferrites synthesis by sol–gel auto-combustion route using used batteries. Mater Lett. 2016;164:444–8.CrossRefGoogle Scholar
  10. 10.
    Baykal A, Kasapoglu N, Durmus Z, Kavas H, Toprak MS, Koseoglu Y. CTAB-assisted hydrothermal synthesis and magnetic characterization of NixCo1−xFe2O4 nanoparticles (x = 0.0, 0.6, 1.0). Turk J Chem. 2009;33:33–45.Google Scholar
  11. 11.
    Coutinho DM, Verenkar VMS. Preparation, spectroscopic and thermal analysis of hexahydrazine nickel cobalt ferrous succinate precursor and study of solid-state properties of its nanosized thermal product, Ni0.5Co0.5Fe2O4. J Therm Anal Calorim. 2017;128:807–17.CrossRefGoogle Scholar
  12. 12.
    Sen R, Jain P, Patidar R, Srivastava S, Rana RS, Gupta N. Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol–gel method. Mater Today Proc. 2015;2:3750–7.CrossRefGoogle Scholar
  13. 13.
    Baykal A, Kasapoglu N, Koseoglu Y, Basaran AC, Kavas H, Toprak MS. Microwave-induced combustion synthesis and characterization of NixCo1−xFe2O4 nanocrystals (x = 0.0, 0.4, 0.6, 0.8, 1.0). Cent Eur J Chem. 2008;6:125–30.Google Scholar
  14. 14.
    Malyshev AV, Vlasov VA, Nikolaev EV, Surzhikov AP, Lysenko EN. Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill. J Therm Anal Calorim. 2018;134:127–33.CrossRefGoogle Scholar
  15. 15.
    Szczygiel I, Winiarska K, Sobianowska-Turek A. The study of thermal, microstructural and magnetic properties of manganese–zinc ferrite prepared by co-precipitation method using different precipitants. J Therm Anal Calorim. 2018;134:51–7.CrossRefGoogle Scholar
  16. 16.
    Pikula T, Oleszak D, Pękala M, Jartych E. Structure and some magnetic properties of mechanically synthesized and thermally treated Co–Fe–Ni alloys. J Magn Magn Mater. 2008;320:413–20.CrossRefGoogle Scholar
  17. 17.
    Joshi S, Kamble VB, Kumar M, Umarji AM, Srivastava G. Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J Alloys Compd. 2016;654:460–6.CrossRefGoogle Scholar
  18. 18.
    Khanam S, Zakaria AKM, Ahsan MH, Datta TK, Aktar S, Liba SI, Hossain S, Das AK, Kamal I, Yunus SM, Saha DK, Eriksson SG. Study of the crystallographic and magnetic structure in the nickel substituted cobalt ferrites by neutron diffraction. Mater Sci Appl. 2015;6:332–42.Google Scholar
  19. 19.
    Becherescu D, Cristea V, Marx F, Menessy I, Winter F. Physical method in silicate chemistry, (Metode fizice in chimia silicatilor). Bucuresti: Scientific and Encyclopedic Publishing House; 1977.Google Scholar
  20. 20.
    Dippong T, Goga F. Advanced instrumental analysis techniques. Thermal methods (Tehnici avansate de analiză instrumentală. Metode termice), Cluj-Napoca: Risoprint; 2016.Google Scholar
  21. 21.
    Pon-On W, Tang CNM, Jongwattanapisan P, Krishnamra N, Hoonsawat R. Encapsulation of magnetic CoFe2O4 in SiO2 nanocomposites using hydroxyapatite as templates: A drug delivery system. Mater Chem Phys. 2011;131:485–94.CrossRefGoogle Scholar
  22. 22.
    Cerda LAG, Montemayor SM. Synthesis of CoFe2O4 nanoparticles embedded in a silica matrix by the citrate precursor technique. J Magn Magn Mater. 2005;294:43–6.CrossRefGoogle Scholar
  23. 23.
    Pirouzfar A, Ebrahimi SA. Optimization of sol–gel synthesis of CoFe2O4 nanowires using template assisted vacuum suction method. J Magn Magn Mater. 2014;370:1–5.CrossRefGoogle Scholar
  24. 24.
    Prakash I, Nallamuthu N, Muralidharan P, Venkateswarlu M, Misra M, Mohanty A, Satyanarayana N. Preparation and characterization of nanocrystalline CoFe2O4 deposited on SiO2: in situ sol–gel process. J Sol-Gel Sci Technol. 2011;58:24–32.CrossRefGoogle Scholar
  25. 25.
    Klug HP, Alexander LE. X-ray diffraction procedures. 2nd ed. New York: Wiley; 1974. p. 687–703.Google Scholar
  26. 26.
    Li X, Hou Y, Zhao Q, Wang L. A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J Colloid Interface Sci. 2011;358:102–8.CrossRefGoogle Scholar
  27. 27.
    Singh C, Goyal A, Singhal S. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale. 2014;6:7959–70.CrossRefGoogle Scholar
  28. 28.
    Yin Q, Qiao R, Li Z, Zhang XL, Zhu L. Hierarchical nanostructures of nickel-doped zinc oxide: morphology controlled synthesis and enhanced visible-light photocatalytic activity. J Alloys Compd. 2015;618:318–25.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Thomas Dippong
    • 1
    Email author
  • Erika Andrea Levei
    • 2
  • Oana Cadar
    • 2
  • Firuta Goga
    • 3
  • Dana Toloman
    • 4
  • Gheorghe Borodi
    • 4
  1. 1.Department of Chemistry and Biology, North University Center of Baia MareTechnical University of Cluj-NapocaBaia MareRomania
  2. 2.INCDO-INOE 2000, Research Institute for Analytical InstrumentationCluj-NapocaRomania
  3. 3.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  4. 4.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations