Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 1911–1918 | Cite as

Thermoanalytical study and crystallization of Ba(PO3)2–WO3 glasses

  • Petr KalendaEmail author
  • Ladislav Koudelka
  • Petr Mošner
  • Ludvík Beneš
  • Helena Drobná


Barium phosphate glasses of the composition (100 − x)Ba(PO3)2xWO3 with 0–60 mol% WO3 were prepared and studied. Thermal studies of the glasses were carried out with DTA, dilatometry and hot-stage microscopy. Glass transition temperature in this glass series increases with increasing WO3 content from 461 °C (x = 0) to 623 °C (x = 60). Most glasses containing WO3 crystallize on heating within the range of 650–750 °C with the exception of glasses with 20–30 mol% WO3, which are thermally stable. Very high chemical durability of these glasses with dissolution rate of 1.4 × 10−8–6.2 × 10−9 g cm−2 min−1 was also revealed. Crystallization of glasses revealed the existence of a new compound Ba(WO2)2(PO4)2 in the studied compositional series. The compound Ba(WO2)2(PO4)2 possess hexagonal unit cell of dimensions a = 11.5191(1) Å and c = 6.3437(1) Å, and its melting point is 936 °C. Raman spectra of crystallized glasses confirmed the formation of crystalline compound in this glass series and revealed the presence of glass phase in some thermal-treated samples. 31P MAS NMR showed on only one coordination of phosphorus atoms in the Ba(WO2)2(PO4)2 compound.


Phosphate glasses Thermal properties Physical properties Crystallization 



The Czech authors are grateful for the financial support from the Project No. 18-01976S of the Grant Agency of the Czech Republic. EDS measurements were taken with the support of the Grants LM2015082 and ED4.100/11.0251 provided by the MSMT Czech Republic. The authors thank L. Montagne and B. Revel for the 31P MAS NMR spectra of the polycrystalline Ba(WO2)2(PO4)2 compound and the corresponding glass of the same composition.

Supplementary material

10973_2019_8115_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)


  1. 1.
    Brow RK. Review: the structure of simple phosphate glasses. J Non-Cryst Solids. 2000;263–264:1–28.CrossRefGoogle Scholar
  2. 2.
    Hsu SM, Wu JJ, Yung SW, Chin TS, Zhang T, Lee YM, Chu CM, Ding JY. Evaluation of chemical durability, thermal properties and structure characteristics of Nb–Sr–phosphate glasses by Raman and NMR spectroscopy. J Non-Cryst Solids. 2012;358:14–9.CrossRefGoogle Scholar
  3. 3.
    Pinet O, Dussossoz JL, David C, Fillet C. Glass matrices for immobilizing nuclear waste containing molybdenum and phosphorus. J Nucl Mater. 2008;377:307–12.CrossRefGoogle Scholar
  4. 4.
    Granqvist CG. Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells. 2000;60:201–62.CrossRefGoogle Scholar
  5. 5.
    Porier G, Nalin M, Messaddeq Y, Ribeiro SJL. Photochromic properties of tungstate-based glasses. Solid State Ion. 2007;178:871–5.CrossRefGoogle Scholar
  6. 6.
    de Araujo CC, Strojek W, Zhang L, Eckert H, Poirier G, Ribeiro SJL, Messaddeq Y. Structural studies of NaPO3–WO3 glasses by solid state NMR and Raman spectroscopy. J Mater Chem. 2006;16:3277–84.CrossRefGoogle Scholar
  7. 7.
    Santagneli SH, Poirier G, Rinke MT, Ribeiro SJL, Messaddeq Y, Eckert H. Structural investigations of tungsten silver phosphate glasses by solid state NMR, vibrational and X-ray absorption near edge spectroscopies. J Non-Cryst Solids. 2011;357:2126–31.CrossRefGoogle Scholar
  8. 8.
    Bih L, Abbas L, Azrour M, El Amraoui Y, Nadiri A. EPR investigation and thermal study of yA2O–(1−y)[0.25(WO3)2–0.75(P2O5)] (A = Li, Na) glasses. J Therm Anal. 2005;81:57–60.CrossRefGoogle Scholar
  9. 9.
    Manzani D, Fernandes RG, Messaddeq Y, Ribeiro SJL, Cassanjes FC, Poirier G. Thermal, structural and optical properties of new tungsten lead-pyrophosphate glasses. Opt Mater. 2011;33:1862–6.CrossRefGoogle Scholar
  10. 10.
    Bih L, Abbas L, Mohdachi S, Nadiri A. Thermal and electrical properties of mixed alkali in Li2O–Na2O–WO3–P2O5 glasses. J Mol Struct. 2008;891:173–7.CrossRefGoogle Scholar
  11. 11.
    Subbalakshmi P, Veeraiah N. Study of CaO–WO3–P2O5 glass system by dielectric properties. IR spectra and differential thermal analysis. J Non-Cryst Solids. 2002;298:89–98.CrossRefGoogle Scholar
  12. 12.
    Kuzmin A, Purans J. X-ray absorption study of the short range order of tungsten and molybdenum ions in BaO–P2O5–WO3 and CaO–P2O5–MoO3 glasses. Journal de Physique IV Colloque. 1997;7:971–3.Google Scholar
  13. 13.
    Marzouk MA, ElBatal FH, Ghoneim NA, Ezz-ElDin FM. Optical, FTIR and ESR spectral investigations of tungsten ions in barium phosphate host glass and effects of gamma irradiation. Silicon. 2018;10:959–65.CrossRefGoogle Scholar
  14. 14.
    Jung BH, Kim DK, Kim HS. Properties and structure of (50 − x)BaO–xZnO–50P2O5. J Non-Cryst Solids. 2005;351:3356–60.CrossRefGoogle Scholar
  15. 15.
    Joint Committee on powder diffraction standards, Swarthmore, PA, USA. International Centre of Diffraction Data.Google Scholar
  16. 16.
    Tawarazama H, Utsuno F, Inoue H, Hosono H, Kawayoe H. Coloration and decoloration of tungsten phosphate glasses by heat treatments at the temperature far below Tg under a controlled ambient. Chem Mater. 2006;18:2810–6.CrossRefGoogle Scholar
  17. 17.
    Porier G, Ottoboni FS, Cassanjes FC, Remonte Á, Messaddeq Y, Ribeiro SJL. Redox behavior of molybdenum and tungsten in phosphate glasses. J Phys Chem B. 2008;112:4481–7.CrossRefGoogle Scholar
  18. 18.
    Lide DR. Handbook of chemistry and physics. Boca Raton: CRC Press; 2001. p. 9–52.Google Scholar
  19. 19.
    Mošner P, Vorokhta M, Koudelka L. Application of heating microscopy to the study of thermal behaviour of ZnO–P2O5–WO3 glasses. J Therm Anal Calorim. 2013;112:659–64.CrossRefGoogle Scholar
  20. 20.
    Rösslerová I, Koudelka L, Černošek Z, Mošner P, Beneš L. Thermal properties and crystallization of PbO–MoO3–P2O5 glasses. J Mater Sci. 2011;46:6751–7.CrossRefGoogle Scholar
  21. 21.
    Kalenda P, Koudelka L, Mošner P, Beneš L, Černošek Z. Thermal properties and crystallization of BaO–MoO3–P2O5 glasses. J Therm Anal Calorim. 2018;131:2303–10.CrossRefGoogle Scholar
  22. 22.
    Kierkegaard P, Holmen S. The crystal structure of AgMoO2PO4. Ark Kemi. 1965;23:213–21.Google Scholar
  23. 23.
    Rösslerová I, Koudelka L, Černošek Z, Mošner P, Beneš L. Study of crystallization of PbO–WO3–P2O5 glasses by thermoanalytical and spectroscopic methods. J Non-Cryst Solids. 2014;384:41–6.CrossRefGoogle Scholar
  24. 24.
    Kierkegaard P. The crystal structure of NaMoO2PO4 and NaWO2PO4. Ark Kemi. 1961;18:553–75.Google Scholar
  25. 25.
    Koudelka L, Kupetska O, Kalenda P, Mošner P, Montagne L, Revel B. Crystallization of sodium molybdate–phosphate and tungstate–phosphate glasses. J Non-Cryst Solids. 2018;500:42-8.CrossRefGoogle Scholar
  26. 26.
    de Wolff PM. A simplified criterion for the reliability of a powder pattern indexing. J Appl Crystallogr. 1968;1:108–13.CrossRefGoogle Scholar
  27. 27.
    Smith GS, Snyder RL. FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J Appl Crystallogr. 1979;12:60–5.CrossRefGoogle Scholar
  28. 28.
    Laugier J, Bochu B. LMGP-Suite, ENSP/Laboratoire des Materiaux et du Genie Physique, Saint Martin d’Heres, France. and Accessed Aug 2018.
  29. 29.
    Boulova M, Lucazeau G. Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy. J Solid State Chem. 2002;167:425–34.CrossRefGoogle Scholar
  30. 30.
    Kim CY, Condrate RA Sr. The vibrational spectra of crystalline W2O3(PO4)2 and related tungsten phosphate glasses. J Phys Chem Solids. 1984;45:1213–8.CrossRefGoogle Scholar
  31. 31.
    Šubčík J, Koudelka L, Mošner P, Gregora I, Montagne L, Delevoye L. Glass-forming ability and structure of glasses in the ZnO–WO3–P2O5 system. Phys Chem Glasses Part B. 2012;53:79–85.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Petr Kalenda
    • 1
    Email author
  • Ladislav Koudelka
    • 1
  • Petr Mošner
    • 1
  • Ludvík Beneš
    • 2
  • Helena Drobná
    • 3
  1. 1.Department of General and Inorganic Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.Joint Laboratory of Solid State ChemistryUniversity of PardubicePardubiceCzech Republic
  3. 3.Department of Physical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations