Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 2073–2080 | Cite as

Numerical investigation of enhancement in melting process of PCM by using internal fins

  • A. JahangiriEmail author
  • O. Ahmadi
Article

Abstract

This paper presents numerical investigation of melting N-eicosane as phase change material (PCM). Effect of using innovative tube shape, in which internal fin had been added to HTF tube, in melting process in cylindrical container had been investigated. For understanding the effect of HTF tube shape in melting rate, different number of fin had been added to HTF tube, and also for understanding this effect more clearly, effect of different number of fin had been investigated for two different situations: (1) ratio of A/P which is ratio of HTF perimeter to area that PCM had occupied had been considered fix and (2) outer diameter had been considered fix and by changing the HTF tube shape, does not change. Also, inner tube had been considered as hot tube and outer tube as insulated. Numerical results were shown by increasing the fin to inner tube; rate of melting increases.

Keywords

Phase change material Internal fins Energy storage Melting Heat transfer enhancement 

List of symbols

C

Mushy zone constant (m2)

Cp

Specific heat (J kg−1 K−1)

k

Thermal conductivity (W m−1 K−1)

g

Gravitational acceleration (m s−2)

H

Enthalpy (J kg−1)

h

Sensible heat (J kg−1)

P

Pressure (Pa)

T

Temperature (°C or K)

r

Tube radius (m)

L

Latent heat fusion (J kg−1)

u

Velocity component in r direction (m s−1)

v

Velocity component in θ direction (m s−1)

t

Time (s)

Ra

Rayleigh number (–)

Nu

Nusselt number (–)

x

Characteristic length (–)

Greek symbols

λ

Liquid fraction (–)

β

Thermal expansion coefficient (–)

α

Thermal diffusivity (–)

ρ

Fluid density (kg m−3)

μ

Dynamic viscosity (kg m−1 s−1)

ε

Constant (–)

Subscripts

ref

Reference

s

Solidus

l

Liquidus

sur

Surface

Notes

References

  1. 1.
    Jin X, Hu H, Shi X, Zhou X, Yang L, Yin Y, et al. An improved heat transfer model for building phase change material wallboard. J Therm Anal Calorim. 2018;134(3):1757–63.Google Scholar
  2. 2.
    Tyagi V, Pandey A, Kaushik S, Tyagi S. Thermal performance evaluation of a solar air heater with and without thermal energy storage: an experimental study. J Therm Anal Calorim. 2011;107(3):1345–52.Google Scholar
  3. 3.
    Akgün M, Aydın O, Kaygusuz K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl Therm Eng. 2008;28(5–6):405–13.Google Scholar
  4. 4.
    Zhou D, Zhao C-Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng. 2011;31(5):970–7.Google Scholar
  5. 5.
    Sarı A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27(8–9):1271–7.Google Scholar
  6. 6.
    Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy. 1983;30(4):313–32.Google Scholar
  7. 7.
    Chandra D, Chellappa R, Chien W-M. Thermodynamic assessment of binary solid-state thermal storage materials. J Phys Chem Solids. 2005;66(2–4):235–40.Google Scholar
  8. 8.
    Pillai K, Brinkworth B. The storage of low grade thermal energy using phase change materials. Appl Energy. 1976;2(3):205–16.Google Scholar
  9. 9.
    Guo L, Yu X, Gao D, Guo Y, Ma C, Deng T. Synthesis and thermal energy storage properties of a calcium-based room temperature phase change material for energy storage. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7610-3.Google Scholar
  10. 10.
    Qu M, Guo C, Li L, Zhang X. Preparation and investigation on tetradecanol and myristic acid/cellulose form-stable phase change material. J Therm Anal Calorim. 2017;130(2):781–90.Google Scholar
  11. 11.
    Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev. 2017;74:26–50.Google Scholar
  12. 12.
    Rizan M, Tan F, Tso CP. An experimental study of n-octadecane melting inside a sphere subjected to constant heat rate at surface. Int Commun Heat Mass Transfer. 2012;39(10):1624–30.Google Scholar
  13. 13.
    Tan F. Constrained and unconstrained melting inside a sphere. Int Commun Heat Mass Transfer. 2008;35(4):466–75.Google Scholar
  14. 14.
    Kozak Y, Rozenfeld T, Ziskind G. Close-contact melting in vertical annular enclosures with a non-isothermal base: theoretical modeling and application to thermal storage. Int J Heat Mass Transf. 2014;72:114–27.Google Scholar
  15. 15.
    Rozenfeld T, Kozak Y, Hayat R, Ziskind G. Close-contact melting in a horizontal cylindrical enclosure with longitudinal plate fins: demonstration, modeling and application to thermal storage. Int J Heat Mass Transf. 2015;86:465–77.Google Scholar
  16. 16.
    Rozenfeld A, Kozak Y, Rozenfeld T, Ziskind G. Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin. Int J Heat Mass Transf. 2017;110:692–709.Google Scholar
  17. 17.
    Fan L-W, Zhu Z-Q, Liu M-J, Xu C-L, Zeng Y, Lu H, et al. Heat transfer during constrained melting of nano-enhanced phase change materials in a spherical capsule: an experimental study. J Heat Transfer. 2016;138(12):122402.Google Scholar
  18. 18.
    Tan F, Hosseinizadeh S, Khodadadi J, Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf. 2009;52(15–16):3464–72.Google Scholar
  19. 19.
    Dhaidan NS, Khodadadi J, Al-Hattab TA, Al-Mashat SM. Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux. Int J Heat Mass Transf. 2013;67:523–34.Google Scholar
  20. 20.
    Lohrasbi S, Sheikholeslami M, Ganji DD. Discharging process expedition of NEPCM in fin-assisted latent heat thermal energy storage system. J Mol Liq. 2016;221:833–41.Google Scholar
  21. 21.
    Ye W-B. Enhanced latent heat thermal energy storage in the double tubes using fins. J Therm Anal Calorim. 2017;128(1):533–40.Google Scholar
  22. 22.
    Paria S, Baradaran S, Amiri A, Sarhan A, Kazi S. Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application. J Therm Anal Calorim. 2016;123(2):1371–81.Google Scholar
  23. 23.
    Kumar TS, Jegadheeswaran S, Chandramohan P. Performance investigation on fin type solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7882-7.Google Scholar
  24. 24.
    Al-Abidi AA, Mat S, Sopian K, Sulaiman M, Mohammad AT. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build. 2014;68:33–41.Google Scholar
  25. 25.
    Agyenim F, Eames P, Smyth M. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renewable Energy. 2010;35(1):198–207.Google Scholar
  26. 26.
    Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy. 2009;83(9):1509–20.Google Scholar
  27. 27.
    Hosseinizadeh S, Tan F, Moosania S. Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins. Appl Therm Eng. 2011;31(17–18):3827–38.Google Scholar
  28. 28.
    Sharifi N, Bergman TL, Faghri A. Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces. Int J Heat Mass Transf. 2011;54(19–20):4182–92.Google Scholar
  29. 29.
    Ismail K, Alves C, Modesto M. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl Therm Eng. 2001;21(1):53–77.Google Scholar
  30. 30.
    Brent A, Voller V, Reid K. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, Part A Applications. 1988;13(3):297–318.Google Scholar
  31. 31.
    Jahangiri A. Modeling the growth of a vapor film formed in contact between a hot metal sphere and water in pressure vessels. Proc Inst Mech Eng Part E J Process Mech Eng. 2018.  https://doi.org/10.1177/0954408918760894.Google Scholar
  32. 32.
    Jahangiri A, Biglari M. The stability of vapor film immersed in superfluid helium on the surface of the hot ball. Proc Inst Mech Eng Part E J Process Mech Eng. 2016;230(6):433–9.Google Scholar
  33. 33.
    Jahangiri A,  Biglari M. Investigation of transport phenomena in a vapour film formed in contact between hot metallic sphere and water. J Mech. 2014;30(4):423–33.Google Scholar
  34. 34.
    Shmueli H, Ziskind G, Letan R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf. 2010;53(19–20):4082–91.Google Scholar
  35. 35.
    Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50(9–10):1790–804.Google Scholar
  36. 36.
    Darzi AR, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus. Appl Math Model. 2012;36(9):4080–6.Google Scholar
  37. 37.
    Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. Hoboken: Wiley; 2011.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical and Energy EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations