Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 2017–2028 | Cite as

(Solid + liquid) equilibrium of binary mixtures containing ethyl esters and p-xylene by differential scanning calorimetry

  • Larissa Castello Branco Almeida Bessa
  • Maria Dolores Robustillo
  • Antonio José de Almeida Meirelles
  • Pedro de Alcântara Pessôa FilhoEmail author
Article

Abstract

Current concerns regarding the environmental and economic sustainability of petroleum-based transportation fuels, including jet fuel, are driving interest into alternative fuels. To study the feasibility of using biodiesel in aviation engines, a deeper knowledge on solid–liquid equilibrium (SLE) of biodiesel/jet fuel blends is required. This work presents SLE data of binary mixtures containing p-xylene, a representative compound of aviation fuel, and fatty esters present in ethylic biodiesel. Experimental data were obtained through differential scanning calorimetry. A simple eutectic behavior was observed for all binary systems, although small regions of partial miscibility are also present. Observed eutectic temperature and composition (ethyl ester mole fraction) are 259.0 K and 0.45, 269.0 K and 0.32, 275.5 K and 0.22, 280.0 K and 0.15, and 247.7 K and 0.58 for systems containing ethyl laurate, ethyl myristate, ethyl palmitate, ethyl stearate and ethyl oleate, respectively. Good agreement was obtained between experimental and calculated data when using UNIFAC (Dortmund) model or Flory–Huggins equation, with root-mean-square deviations ranging from 0.47 to 1.90 K. The systems exhibit significant deviations from ideality, which cannot be neglected in model calculations.

Keywords

DSC Biodiesel p-Xylene Ethyl ester Solid–liquid equilibrium 

Notes

Acknowledgements

Authors wish to acknowledge the Brazilian agencies CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, FAPESP—Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant Numbers 2018/06956-2, 2014/21252-0 and 2010/18355-1), and CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Numbers 304906/2014-0 and 150950/2014-4) for their financial support.

Supplementary material

10973_2019_8085_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1035 kb)

References

  1. 1.
    Staples MD, Malina R, Suresh P, Hileman JI, Barrett SRH. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy. 2018;114:342–54.  https://doi.org/10.1016/j.enpol.2017.12.007.Google Scholar
  2. 2.
    Boeing. Current market outlook 2017. 2017. http://www.boeing.com/commercial/market/current-market-outlook-2017/. Accessed 06 Feb 2017.
  3. 3.
    IATA. International Air Transport Association - A Global Approach to Reducing Aviation Emissions. Geneva. 2009.Google Scholar
  4. 4.
    Martini DZ, Aragão LEOC, Sanches IDA, Galdos MV, da Silva CRU, Dalla-Nora EL. Land availability for sugarcane derived jet-biofuels in São Paulo—Brazil. Land Use Policy. 2018;70:256–62.  https://doi.org/10.1016/j.landusepol.2017.10.035.Google Scholar
  5. 5.
    ICAO. International Civil Aviation Organization. On board a sustainable future: 2016 environmental report. 2016. http://www.icao.int/environmental-protection/Documents/ICAO%20Environmental%20Report%202016.pdf. Accessed 06 Feb 2018.
  6. 6.
    Lown AL, Peereboom L, Mueller SA, Anderson JE, Miller DJ, Lira CT. Cold flow properties for blends of biofuels with diesel and jet fuels. Fuel. 2014;117:544–51.  https://doi.org/10.1016/j.fuel.2013.09.067.Google Scholar
  7. 7.
    Karatzos S, van Dyk JS, McMillan JD, Saddler J. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I. Biofuels, Bioprod Biorefin. 2017;11(2):344–62.  https://doi.org/10.1002/bbb.1746.Google Scholar
  8. 8.
    Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005;86(10):1059–70.  https://doi.org/10.1016/j.fuproc.2004.11.002.Google Scholar
  9. 9.
    Imahara H, Minami E, Saka S. Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel. 2006;85(12–13):1666–70.  https://doi.org/10.1016/j.fuel.2006.03.003.Google Scholar
  10. 10.
    Knothe G. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels. 2008;22(2):1358–64.  https://doi.org/10.1021/ef700639e.Google Scholar
  11. 11.
    Costa MC, Boros LAD, Batista MLS, Coutinho JAP, Krähenbühl MA, Meirelles AJA. Phase diagrams of mixtures of ethyl palmitate with fatty acid ethyl esters. Fuel. 2012;91(1):177–81.  https://doi.org/10.1016/j.fuel.2011.07.018.Google Scholar
  12. 12.
    Robustillo MD, Barbosa DF, Meirelles AJA, Pessôa Filho PA. Solid–liquid equilibrium in ternary mixtures of ethyl oleate, ethyl laurate and ethyl palmitate. Fluid Phase Equilib. 2013;339:58–66.  https://doi.org/10.1016/j.fluid.2012.11.030.Google Scholar
  13. 13.
    Robustillo MD, Barbosa DF, Meirelles AJA, Pessôa Filho PA. Solid–liquid equilibrium in ternary mixtures of ethyl laurate, ethyl palmitate and ethyl stearate. Fluid Phase Equilib. 2013;358:272–81.  https://doi.org/10.1016/j.fluid.2013.08.024.Google Scholar
  14. 14.
    Robustillo MD, Barbosa DF, Meirelles AJA, Pessôa Filho PA. Solid–liquid equilibrium in ternary mixtures of ethyl laurate, ethyl palmitate and ethyl myristate. Fluid Phase Equilib. 2014;361:188–99.  https://doi.org/10.1016/j.fluid.2013.10.024.Google Scholar
  15. 15.
    Robustillo MD, Barbosa DF, Meirelles AJA, Pessôa Filho PA. Solid–liquid equilibrium of binary and ternary mixtures containing ethyl oleate, ethyl myristate and ethyl stearate. Fluid Phase Equilib. 2014;370:85–94.  https://doi.org/10.1016/j.fluid.2014.03.001.Google Scholar
  16. 16.
    Dunn R. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures. Trans ASABE. 2012;55:637–46.  https://doi.org/10.13031/2013.41365.Google Scholar
  17. 17.
    Boros L, Batista MLS, Vaz RV, Figueiredo BR, Fernandes VFS, Costa MC, et al. Crystallization behavior of mixtures of fatty acid ethyl esters with ethyl stearate. Energy Fuels. 2009;23(9):4625–9.  https://doi.org/10.1021/ef900366z.Google Scholar
  18. 18.
    Costa MC, Boros LAD, Coutinho JAP, Krähenbühl MA, Meirelles AJA. Low-temperature behavior of biodiesel: solid–liquid phase diagrams of binary mixtures composed of fatty acid methyl esters. Energy Fuels. 2011;25(7):3244–50.  https://doi.org/10.1021/ef2004199.Google Scholar
  19. 19.
    Benziane M, Khimeche K, Dahmani A, Nezar S, Trache D. Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids methyl esters. J Therm Anal Calorim. 2013;112(1):229–35.  https://doi.org/10.1007/s10973-012-2654-2.Google Scholar
  20. 20.
    Robustillo MD, Parra DF, Meirelles AJA, Pessôa Filho PA. Solid–liquid equilibrium of binary and ternary systems formed by ethyl laurate, ethyl palmitate and n-decane: experimental data and thermodynamic modeling. Fluid Phase Equilib. 2016;426:83–94.  https://doi.org/10.1016/j.fluid.2016.01.044.Google Scholar
  21. 21.
    Moura-Nickel CD, Contarti da Cruz LC, Igarashi-Mafra L, Yamamoto CI, Rolemberg MP, Mafra MR. Determination of cloud point in binary and ternary mixtures containing biodiesel and diesel constituents. Part I – ethyl palmitate, ethyl stearate and n-hexadecane. Fuel. 2016;180:442–7.  https://doi.org/10.1016/j.fuel.2016.04.054.Google Scholar
  22. 22.
    Chabane S, Benziane M, Khimeche K, Trache D, Didaoui S, Yagoubi N. Low-temperature behavior of diesel/biodiesel blends. J Therm Anal Calorim. 2018;131(2):1615–24.  https://doi.org/10.1007/s10973-017-6614-8.Google Scholar
  23. 23.
    Robustillo MD, Bessa LCBA, Meirelles AJA, Pessôa Filho PA. Experimental data and thermodynamic modeling of solid–liquid equilibrium of binary systems containing representative compounds of biodiesel and fossil fuels: ethyl esters and n-hexadecane. Fuel. 2018;220:303–17.  https://doi.org/10.1016/j.fuel.2018.01.117.Google Scholar
  24. 24.
    Robustillo MD, Meirelles AJA, Pessôa Filho PA. Solid–liquid equilibrium of binary and ternary systems formed by ethyl laurate, ethyl palmitate and dodecylcylohexane: experimental data and thermodynamic modeling. Fluid Phase Equilib. 2016;409:157–70.  https://doi.org/10.1016/j.fluid.2015.09.038.Google Scholar
  25. 25.
    Benziane M, Khimeche K, Trache D, Dahmani A. Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of aromatic and fatty acids methyl esters. J Therm Anal Calorim. 2013;114(3):1383–9.  https://doi.org/10.1007/s10973-013-3147-7.Google Scholar
  26. 26.
    Chevron. Aviation Fuels - Technical Review. San Ramon, CA. 2007.Google Scholar
  27. 27.
    Collinet E, Gmehling J. Activity coefficient at infinite dilution, azeotropic data, excess enthalpies and solid–liquid-equilibria for binary systems of alkanes and aromatics with esters. Fluid Phase Equilib. 2005;230(1–2):131–42.  https://doi.org/10.1016/j.fluid.2004.12.005.Google Scholar
  28. 28.
    Basso RC, da Silva CA, de Oliveira Sousa C, de Almeida Meirelles AJ, Batista EAC. LLE experimental data, thermodynamic modeling and sensitivity analysis in the ethyl biodiesel from macauba pulp oil settling step. Bioresour Technol. 2013;131:468–75.  https://doi.org/10.1016/j.biortech.2012.12.190.Google Scholar
  29. 29.
    Zabarnick S, Widmor N. Studies of jet fuel freezing by differential scanning calorimetry. Energy Fuels. 2001;15(6):1447–53.  https://doi.org/10.1021/ef010074b.Google Scholar
  30. 30.
    Prausnitz JM, Lichtenthaler RN, Azevedo EG. Molecular thermodynamics of fluid-phase equilibria, 3ª Ed. ed. Pearson Education; 1998.Google Scholar
  31. 31.
    Gmehling J, Li J, Schiller M. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind Eng Chem Res. 1993;32(1):178–93.  https://doi.org/10.1021/ie00013a024.Google Scholar
  32. 32.
    Costa MC, Sardo M, Rolemberg MP, Coutinho JAP, Meirelles AJA, Ribeiro-Claro P, et al. The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids. Chem Phys Lipids. 2009;160(2):85–97.  https://doi.org/10.1016/j.chemphyslip.2009.05.004.Google Scholar
  33. 33.
    Costa MC, Rolemberg MP, Meirelles AJA, Coutinho JAP, Krähenbühl MA. The solid–liquid phase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms. Thermochim Acta. 2009;496(1–2):30–7.  https://doi.org/10.1016/j.tca.2009.06.018.Google Scholar
  34. 34.
    Maximo GJ, Aquino RT, Meirelles AJA, Krähenbühl MA, Costa MC. Enhancing the description of SSLE data for binary and ternary fatty mixtures. Fluid Phase Equilib. 2016;426:119–30.  https://doi.org/10.1016/j.fluid.2016.01.011.Google Scholar
  35. 35.
    Costa MC, Rolemberg MP, Boros LAD, Krähenbühl MA, de Oliveira MG, Meirelles AJA. Solid–liquid equilibrium of binary fatty acid mixtures. J Chem Eng Data. 2007;52(1):30–6.  https://doi.org/10.1021/je060146z.Google Scholar
  36. 36.
    Kouakou AC, Mapihan KL, Pauly J. Solid–liquid equilibria under high pressure of pure fatty acid methyl esters. Fuel. 2013;109:297–302.  https://doi.org/10.1016/j.fuel.2013.01.036.Google Scholar
  37. 37.
    Coutinho JAP, Gonçalves M, Pratas MJ, Batista MLS, Fernandes VFS, Pauly J, et al. Measurement and modeling of biodiesel cold-flow properties. Energy Fuels. 2010;24(4):2667–74.  https://doi.org/10.1021/ef901427g.Google Scholar
  38. 38.
    Coutinho JAP, Andersen SI, Stenby EH. Evaluation of activity coefficient models in prediction of alkane solid–liquid equilibria. Fluid Phase Equilib. 1995;103(1):23–39.  https://doi.org/10.1016/0378-3812(94)02600-6.Google Scholar
  39. 39.
    NIST Chemistry WebBook. 2017. http://webbook.nist.gov/chemistry/.
  40. 40.
    Nývlt J. Solid–liquid phase equilibria. Elsevier Scientific Pub.; 1977.Google Scholar
  41. 41.
    Chernik GG. Phase equilibria in phospholipid-water systems. Adv Colloid Interface Sci. 1995;61:65–129.  https://doi.org/10.1016/0001-8686(95)00262-O.Google Scholar
  42. 42.
    Carareto NDD, dos Santos AO, Rolemberg MP, Cardoso LP, Costa MC, Meirelles AJA. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: systems exhibiting peritectic reaction. Thermochim Acta. 2014;589:137–47.  https://doi.org/10.1016/j.tca.2014.05.022.Google Scholar
  43. 43.
    Carareto NDD, Castagnaro T, Costa MC, Meirelles AJA. The binary (solid + liquid) phase diagrams of (caprylic or capric acid) + (1-octanol or 1-decanol). J Chem Thermodyn. 2014;78:99–108.  https://doi.org/10.1016/j.jct.2014.06.011.Google Scholar
  44. 44.
    Gamsjäger H, Lorimer JW, Scharlin P, Shaw DG. Glossary of terms related to solubility (IUPAC Recommendations 2008). Pure Appl Chem. 2008;80(2):233–76.Google Scholar
  45. 45.
    Costa MC, Boros LAD, Souza JA, Rolemberg MP, Krähenbühl MA, Meirelles AJA. Solid–liquid equilibrium of binary mixtures containing fatty acids and triacylglycerols. J Chem Eng Data. 2011;56(8):3277–84.  https://doi.org/10.1021/je200033b.Google Scholar
  46. 46.
    Maximo GJ, Costa MC, Coutinho JAP, Meirelles AJA. Trends and demands in the solid–liquid equilibrium of lipidic mixtures. RSC Adv. 2014;4(60):31840–50.  https://doi.org/10.1039/C4RA02715A.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Engineering SchoolUniversity of São Paulo (USP)São PauloBrazil
  2. 2.Department of Food Engineering (DEA), School of Food Engineering (FEA)University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations