Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 1929–1938 | Cite as

PYROLYSIS of glycerol with modified vermiculite catalysts

Kinetic and PY-GC/MS
  • Luana Márcia Bezerra BatistaEmail author
  • Franciel Aureliano Bezerra
  • João Leonardo Freitas Oliveira
  • Aruzza Mabel de Morais Araújo
  • Valter José Fernandes Junior
  • Antonio Souza Araujo
  • Amanda Duarte Gondim
  • Ana P. M. Alves
Article
  • 116 Downloads

Abstract

Sodium and activated vermiculites were applied as catalysts in the pyrolysis of glycerol. The physical–chemical characterization showed that acid treatment significantly modified the chemical composition, specific area, porosity and structure of sodium vermiculite. Thermogravimetric analysis of the pyrolysis process showed that the presence of catalysts reduced the degradation temperature of glycerol. Kinetic study by the Ozawa–Flynn–Wall model indicated a reduction in the activation energy (Ea) of the process with the use of the catalysts: thermal pyrolysis, Ea = 106.7 kJ mol−1; thermocatalytic pyrolysis with sodium vermiculite, Ea = 90.7 kJ mol−1; and with activated vermiculite, Ea = 85.2 kJ mol−1. Pyrolysis via a pyrolyzer coupled to gas chromatography/mass spectrometry (Py-GC/MS) showed that activated vermiculite provided higher deoxygenation. Thus, the use of activated vermiculite in thermocatalytic pyrolysis is a good option for the transformation of glycerol, because it decreases the activation energy of the process and increases the selectivity for a range of industrially valued products, such as acetaldehyde, acrolein, acetol, glycidol, propylene glycol and 2-propanol.

Keywords

Vermiculite Acid activation Glycerol Pyrolysis Thermogravimetric analysis Py-GC/MS 

Notes

Acknowledgements

The authors thank the Coordination of Personal Improvement of Higher Education (Capes) and the National Council for Scientific and Technological Development (CNPq).

References

  1. 1.
    Earth System Research Laboratory Global Monitoring Division. 2017. https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/. Accessed 01 Apr 2017.
  2. 2.
    Earth System Research Laboratory Global Monitoring Division. 2017. http://climate.nasa.gov/vital-signs/carbon-dioxide/. Accessed 01 Apr 2017.
  3. 3.
    Demsash HD, Mohan R. Steam reforming of glycerol to hydrogen over ceria promoted nickelealumina catalyst. Int J Hydrog Energy. 2016;41:1–11.CrossRefGoogle Scholar
  4. 4.
    Koc S, Avci AK. Reforming of glycerol to hydrogen over Ni-based catalysts in a microchannel reactor. Fuel Process Technol. 2016;156:357–65.CrossRefGoogle Scholar
  5. 5.
    Castelló ML, Dweck J, Aranda DAG. Kinetic study of thermal processing of glycerol by thermogravimetry. J Therm Anal Calorim. 2011;105:737–46.CrossRefGoogle Scholar
  6. 6.
    Lin YC. Catalytic valorization of glycerol to hydrogen and syngas. Int J Hydrog Energy. 2013;38:2678–700.CrossRefGoogle Scholar
  7. 7.
    Farnetti E, Crotti C. Selective oxidation of glycerol to formic acid catalyzed by iron salts. Catal Commun. 2016;84:1–4.CrossRefGoogle Scholar
  8. 8.
    Ma T, Ding J, Shao R, Xu W, Yun Z. Dehydration of glycerol to acrolein over Wells-Dawson and Keggin type phosphotungstic acids supported on MCM-41 catalysts. Chem Eng J. 2017;316:797–806.CrossRefGoogle Scholar
  9. 9.
    Kant A, He Y, Jawad A, Li X, Rezaei F, Smith JD, Rownagh AA. Hydrogenolysis of glycerol over Ni, Cu, Zn, and Zr supported on H-beta. Chem Eng J. 2017;317:1–8.CrossRefGoogle Scholar
  10. 10.
    Chen L, Nohair B, Kaliaguine S. Glycerol acetalization with formaldehyde using water-tolerant solid acids. Appl Catal A. 2016;509:143–52.CrossRefGoogle Scholar
  11. 11.
    Shahirah MNN, Ayodele BV, Gimbun J, Lam SS, Cheng CK. Renewable syngas production from thermal cracking of glycerol over praseodymium-promoted Ni/Al2O3 catalyst. Appl Therm Eng. 2017;112:871–80.CrossRefGoogle Scholar
  12. 12.
    Castelló ML, Dweck J, Aranda DAG. Evaluation of ZSM-5 as a catalyst for glycerol pyrolysis by thermogravimetry. J Therm Anal Calorim. 2015;119:2179–85.CrossRefGoogle Scholar
  13. 13.
    Alexandre-Franco M, Albarrán-Liso A, Gómez-Serrano V. An identification study of vermiculites and micas: adsorption of metal ions in aqueous solution. Fuel Process Technol. 2011;92:200–5.CrossRefGoogle Scholar
  14. 14.
    Jin L, Dai B. TiO2 activation using acid-treated vermiculite as a support: characteristics and photoreactivity. Appl Surf Sci. 2012;258:3386–92.CrossRefGoogle Scholar
  15. 15.
    Wang L, Wang X, Cui S, Fan X, Zu B, Wang C. TiO2 supported on silica nanolayers derived from vermiculite for efficient photocatalysis. Catal Today. 2013;216:95–103.CrossRefGoogle Scholar
  16. 16.
    Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.CrossRefGoogle Scholar
  17. 17.
    Rakhsh F, Golchin A, Aghab ABA, Alamdari P. Effects of exchangeable cations, mineralogy and clay content on the mineralization of plant residue carbon. Geoderma. 2017;307:150–8.CrossRefGoogle Scholar
  18. 18.
    Alves APM, Araujo AS, Bezerra FA, Sousa KS, Lima SJG, Fonseca MG. Kinetics of dehydration and textural characterizations of selectively leached vermiculites. J Therm Anal Calorim. 2014;117:19–26.CrossRefGoogle Scholar
  19. 19.
    Santos SSG, Silva HRM, de Souza AG, Alves APM, da Silva Filho EC, Fonseca MG. Acid-leached mixed vermiculites obtained by treatment with nitric acid. Appl Clay Sci. 2015;104:286–94.CrossRefGoogle Scholar
  20. 20.
    Vyazovkin S. Model-free kinetics Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.CrossRefGoogle Scholar
  21. 21.
    Chmielarz L, Kowalczyk A, Michalik M, Dudek B, Piwowarska Z, Matusiewicz A. Acid-activated vermiculites and phlogophites as catalysts for the DeNOx process. Appl Clay Sci. 2010;49:156–62.CrossRefGoogle Scholar
  22. 22.
    Moore DM, Reynolds RC Jr. X-Ray diffration and the identification and analysis of clay minerals. 2nd ed. New York: Oxford University Press; 1997.Google Scholar
  23. 23.
    Bergaya FE, Lagaly G. Handbook of clay science. 5th ed. Oxford: Elsevier; 2013.Google Scholar
  24. 24.
    Madejová J, Pentrák M, Pálková H, Komadel P. Near-infrared spectroscopy: a powerful tool in studies of acid-treated clay minerals. Vib Spectrosc. 2009;49:211–8.CrossRefGoogle Scholar
  25. 25.
    Steudel A, Batenburg LF, Fischer HR, Weidler PG, Emmerich K. Alteration of swelling clay minerals by acid activation. Appl Clay Sci. 2009;44:105–15.CrossRefGoogle Scholar
  26. 26.
    Costa TMH. Infrared and thermogravimetric study of high pressure consolidation in alkoxide silica gel powders. J Non-Cryst Solids. 1997;220:195–201.CrossRefGoogle Scholar
  27. 27.
    Kumar MS, Schwidder M, Grunert W, Bruckner A. Montmorillonites supported with metal oxide nanoparticles for decontamination of sulfur mustard. J Catal. 2004;227:384–97.CrossRefGoogle Scholar
  28. 28.
    Chmielarz L, Wojciechowska M, Rutkowska M, Adamski A, Wégrzyn A, Kowalczyk A, Dudek B, Boroń P, Michalik M, Matusiewicz A. Acid-activated vermiculites as catalysts of the DeNOx process. Catal Today. 2012;191:25–31.CrossRefGoogle Scholar
  29. 29.
    Chmielarz L, Rutkowska M, Jabłońska M, Węgrzyn A, Kowalczyk A, Boroń P, Piwowarska Z, Matusiewicz A. Acid-treated vermiculites as effective catalysts of high-temperature N2O decomposition. Catal Today. 2014;101:237–45.Google Scholar
  30. 30.
    Castelló ML, Dweck J, Aranda DAG, Pereira RCL, Neto MJRG. ZSM5 as a Potential Catalyst for Glycerol Pyrolysis. J Sustain Bioenergy Syst. 2014;4:61–7.CrossRefGoogle Scholar
  31. 31.
    Barker-Hemings E, Cavallotti C, Cuoci A, Faravelli T, Ranzi E. A detailed kinetic study of pyrolysis and oxidation of glycerol (propane-1,2,3-triol). Combust Sci Technol. 2011;184:1164–78.CrossRefGoogle Scholar
  32. 32.
    Araújo AMM, Lima RO, Gondim AD, Diniz J, Di Souza L, Araujo AS. Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41. Renew Energy. 2017;101:900–6.CrossRefGoogle Scholar
  33. 33.
    Fréty R, Pacheco JGA, Santos MR, Padilha JF, Azevedo AF, Brandão ST, Pontes LAM. Flash pyrolysis of model compounds adsorbed on catalyst surface: a method for screening catalysts for cracking of fatty molecules. J Anal Appl Pyrolysis. 2014;109:56–64.CrossRefGoogle Scholar
  34. 34.
    Suquet H, Chevalier S, Marcilly C, Barthomeuf D. Preparation of porous materials by chemical activation of the llano vermiculite. Clay Minerals. 1991;26:49–60.CrossRefGoogle Scholar
  35. 35.
    Bezerra FA, Figueiredo AL, Araujo AS, Guedes APMA. Pirólise catalítica do PEBD usando como catalisador a vermiculita modificada. Polímeros. 2016;26:55–9.CrossRefGoogle Scholar
  36. 36.
    Technical Bulletin. 2014. http://gardenquimica.com.br/boletim/Propilenoglicol.pdf. Accessed 03 Dec 2017.
  37. 37.
    International Programme On Chemical Safety. 2017. http://www.inchem.org/documents/ehc/ehc/ehc127.htm#SubSectionNumber:3.2.2. Accessed 03 Dec 2017.
  38. 38.
    Solvay - Asking more from chemistry. 2017. http://www.rhodia.com/en/markets_and_products/leading_brands/acetow_rhodia_acetol.tcm. Accessed 03 Dec 2017.
  39. 39.
    Chemicalland21. 2017. http://www.chemicalland21.com/specialtychem/finechem/GLYCIDOL.htm. Accessed 03 Dec 2017.
  40. 40.
    Gomes GCC. Métodos de Preparação Industrial de Solventes e Reagentes Químicos. Rev Virtual Quim. 2016;8:2138–46.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Luana Márcia Bezerra Batista
    • 1
    Email author
  • Franciel Aureliano Bezerra
    • 2
  • João Leonardo Freitas Oliveira
    • 1
  • Aruzza Mabel de Morais Araújo
    • 1
  • Valter José Fernandes Junior
    • 1
  • Antonio Souza Araujo
    • 1
  • Amanda Duarte Gondim
    • 1
  • Ana P. M. Alves
    • 3
  1. 1.Federal University of Rio Grande do Norte, Institute of ChemistryNatalBrazil
  2. 2.Federal University of Uberlândia, Institute of ChemistryUberlândiaBrazil
  3. 3.Departament of ChemistryFederal University of ParaíbaJoão PessoaBrazil

Personalised recommendations