Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer

  • Goutam Kishore Gupta
  • Monoj Kumar MondalEmail author


The purpose of the study was to inspect the thermal degradation behavior of maize cob to find out its pyrolytic behavior for bioenergy generation. Prior to thermal degradation, the initial characterizations (proximate analysis, ultimate analysis and HHV) were done to check its suitability toward pyrolysis process. Later, thermogravimetric experiments were performed from ambient temperature to 900 °C at three different slow heating rates (5, 10 and 20 °C min−1) in a thermogravimetric analyzer with inert atmosphere. Thermogravimetric results confirmed that maximum devolatilization occurred at the temperature range of 200–460 °C. For kinetic and thermodynamic studies, four iso-conversional models (Friedman, FWO, KAS and Starink) were applied and average activation energies calculated from these models were 197.63, 186.06, 185.39 and 185.80 kJ mol−1, respectively. The potential energy barrier between activation energy and enthalpy of reaction (~ 4–6 kJ mol−1) revealed the favorable conditions for product formation. Gibbs free energy change (ΔG) for maize cob was found in the range of 174.91 to 179.47 kJ mol−1 and 174.27 to 180.23 kJ mol−1 for KAS and Friedman methods, respectively. Thus, kinetic and thermodynamic data along with HHV (15.27 MJ kg−1) showed that maize cob had enough potential to be utilized for bioenergy production.


Maize cob Thermogravimetric analysis Kinetics Bioenergy 



The authors are thankful to the Department of Chemical Engineering and Technology, Indian Institute of technology, BHU, Varanasi, India, for providing required equipments and facilities for undertaking this work.


  1. 1.
    Ahmad MS, Mehmood MA, Taqvi STH, Elkamel A, Liu CG, Xu J, Rahimuddin SA, Gull M. Pyrolysis, kinetics analysis, thermodynamic parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresour Technol. 2017;245:491–501.Google Scholar
  2. 2.
    Gercel HF. Bio-oil production from Onopordum acanthium L. by slow pyrolysis. J Anal Appl Pyrolysis. 2011;92(1):233–8.Google Scholar
  3. 3.
    Jourabchi SA, Gan S, Ng HK. Comparison of conventional and fast pyrolysis for the production of Jatropha Curcas bio-oil. Appl Therm Eng. 2016;99:160–8.Google Scholar
  4. 4.
    Huang H, Yuan X. Recent progress in direct liquefaction of typical biomass. Prog Energy Combust Sci. 2015;49:59–80.Google Scholar
  5. 5.
    Demiral I, Kul SC. Pyrolysis of apricot kernel shell in a fixed–bed reactor: characterization of bio-oil and char. J Anal Appl Pyrolysis. 2014;107:17–24.Google Scholar
  6. 6.
    Sharma A, Pareek V, Zhang D. Biomass pyrolysis—a review of modeling, process parameters and catalytic studies. Renew Sustain Energy Rev. 2015;50:1081–96.Google Scholar
  7. 7.
    Edrisi SC, Abhilash PC. Exploing marginal and degraded lands for biomass and bioenergy production. Renew Sustain Energy Rev. 2016;54:1537–51.Google Scholar
  8. 8.
    Zhang X, Xu M, Sun L. Study on biomass pyrolysis kinetics. J Eng Gas Turbines Power. 2004;128(3):493–6.Google Scholar
  9. 9.
    Gupta GK, Ram M, Bala R, Kapur M, Mondal MK. Pyrolysis of chemically treated corncob for biochar production and its application in Cr(VI) removal. Environ Prog Sustain Energy. 2018;37:1606–17.Google Scholar
  10. 10.
    Ro KS, Hunt PG, Jackson MA, Compton DL, Yates SR, Cantrell K, Chang SC. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study. Waste Manag. 2014;34(8):1520–8.Google Scholar
  11. 11.
    Couce AA. Reaction mechanisms and multi-scale modeling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci. 2016;53:41–79.Google Scholar
  12. 12.
    White JE, Catallo WL, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91(1):1–33.Google Scholar
  13. 13.
    Hu M, Chen Z, Guo D, Liu C, Xiao B, Hu Z, Liu S. Thermogravimetric study on pyrolysis kinetics on Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresour Technol. 2015;177:41–50.Google Scholar
  14. 14.
    Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.Google Scholar
  15. 15.
    India maize summit. 2014. (FICCI). Accessed 15 December 2017.
  16. 16.
    Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci. 1964;6(1):183–95.Google Scholar
  17. 17.
    Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B. 1966;4:323–8.Google Scholar
  18. 18.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.Google Scholar
  19. 19.
    Xu Q, Zhang H, Li H, Zhao S, Wan L, Yan Y. Pyrolysis kinetics mechanism analysis of sawdust by Sestak–Berggren function. Energy Sources Part A. 2013;35:936–44.Google Scholar
  20. 20.
    Starink MJ. A new method for derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1966;288(1–2):97–104.Google Scholar
  21. 21.
    Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manures to biochars using thermogravimetric analysis. Bioresour Technol. 2013;146:485–93.Google Scholar
  22. 22.
    Lee Y, Eum PRB, Ryu C, Park YK, Jung JH, Hyun S. Characteristics of biochar produced from slow pyrolysis of Geodae–Ukase 1. Bioresour Technol. 2013;130:345–50.Google Scholar
  23. 23.
    Mehmood MA, Ye G, Luo H, Liu C, Malik S, Afzal I, Xu J, Ahmad MS. Pyrolysis and kinetic analyses of camel grass (Cymbopogon Schoenanthus) for bioenergy. Bioresour Technol. 2017;228:18–24.Google Scholar
  24. 24.
    Paulrud S, Nilsson C. Briquetting and combustion of spring harvested reed canary grass: effect of fuel composition. Biomass Bioenergy. 2001;20(1):25–35.Google Scholar
  25. 25.
    Ceylan S, Kazan D. Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis Oculata and Tetaselmis sp. Bioresour Technol. 2015;187:1–5.Google Scholar
  26. 26.
    Chen D, Shuang E, Liu L. Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. J Therm Anal Calorim. 2018;131:1899–909.Google Scholar
  27. 27.
    Yang H, Yan R, Chen H, Lee DH, Cheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8.Google Scholar
  28. 28.
    Misse SE, Brillard A, Brilhac JF, Obonou M, Ayina LM, Schonnenbeck C, Caillant S. Thermogravimetric analyses and kinetic modeling of three Cameroonian biomass. J Therm Anal Calorim. 2018;132:1979–94.Google Scholar
  29. 29.
    Gu X, Liu C, Jiang X, Ma X, Li L, Cheng K, Li Z. Thermal behavior and kinetics of the pyrolysis of the raw/steam exploded poplar wood sawdust. J Anal Appl Pyrolysis. 2014;106:177–86.Google Scholar
  30. 30.
    Braga RM, Melo DMA, Aquino FM, Freintas JCO, Melo MAF, Barros JMF, Fontes MSB. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim. 2014;115:1915–20.Google Scholar
  31. 31.
    Khan AS, Man Z, Bustam MA, Kait CF, Ullah Z, Nasrullah A, MKhan MI, Gonfa G, Ahmad P, Muhammad N. Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. J Mol Liq. 2016;223:754–62.Google Scholar
  32. 32.
    Guerrero MRB, Paula MMS, Zaragoza MM, Gutierrez JS, Velderrain VG, Lopezortiz A, Martinez VC. Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. Int J Hydrogen Energy. 2014;39:16619–27.Google Scholar
  33. 33.
    Maia AAD, Morais LC. Kinetic parameters of red pepper waste as biomass to solid fuel. Bioresour Technol. 2016;204:157–63.Google Scholar
  34. 34.
    Junges J, Collazzo GC, Perondi D, Filho AAD, Ferreira SD, Dettmer A, Osorio E, Godinho M. Critical analysis of non-isothermal kinetics of poultry litter pyrolysis. J Therm Anal Calorim. 2018;134:2329–38.Google Scholar
  35. 35.
    Huang H, Wang K, Klein M, Calkins W. Determination of coal rank by thermogravimetric analysis. Soc Div Fuel Chem. 1995;40:465–9.Google Scholar
  36. 36.
    Xiang Y, Xiang Y, Wang LJ. Thermal decomposition kinetic of hybrid poplar sawdust as biomass to biofuel. J Environ Chem Eng. 2016;4:3303–8.Google Scholar
  37. 37.
    Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, Rashid U, Nehdi IA, Qadir G. Kinetic analyses and pyroltic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol. 2017;224:708–13.Google Scholar
  38. 38.
    Yuan X, He T, Cao H, Yuan Q. Cattle manure pyrolysis process: kinetic and thermodynamic analysis with iso-conversional methods. Renew Energy. 2017;107:489–96.Google Scholar
  39. 39.
    Gasparovie L, Labovsky J, Markos J, Jelemensky L. Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chem Biochem Eng Q. 2012;26:45–53.Google Scholar
  40. 40.
    Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.Google Scholar
  41. 41.
    Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rice husk ash polypropene composites. Express Polym Lett. 2008;2:133–46.Google Scholar
  42. 42.
    Ahmad MS, Mehmood MA, Ye G, Al-Ayed OS, Ibrahim M, Rashid U, Luo H, Qadir G, Nehdi IA. Thermogravimetric analyses revealed the bioenergy potential of Eulaliopsis binata. J Therm Anal Calorim. 2017;130:1237–47.Google Scholar
  43. 43.
    Daugaard DE, Brown RC. Enthalpy for pyrolysis for several types of biomass. Energy Fuels. 2003;17:934–9.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations