Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 4, pp 1211–1224 | Cite as

Comparative study on the thermal behavior of structural concretes of sodium-cooled fast reactor

Siliceous concretes
  • Shin KikuchiEmail author
  • Nobuyoshi Koga
  • Atsushi Yamazaki
Article
  • 157 Downloads

Abstract

Thermal behaviors of two different siliceous concretes used in a sodium-cooled fast reactor were comparatively investigated in a temperature range from room temperature to 1900 K for obtaining fundamental information required for establishing a plant simulation system for safety assessment under a postulated accidental condition. Silica crystals and Portland cement were identified as the major component of the aggregate and cement portions of the concrete samples, respectively. The thermal decomposition of the cement portion exhibited partially overlapping multistep reaction comprising the thermal dehydration, thermal decomposition processes of Ca(OH)2 and carbonate compounds including CaCO3. TG–DTG curves recorded for the multistep thermal decomposition process of the cement portion were analyzed using the kinetic deconvolution analysis, and the contributions and kinetic parameters of each reaction step were determined. The kinetics of comparable reaction steps between two samples were practically identical, while the difference between the samples was found in the content ratio of Ca(OH)2/CaCO3. The melting behavior of the siliceous concretes was revealed by the complementary interpretation of TG–DTA curves and the morphological observation of the sample heated to different temperatures. The softening and melting behaviors of the siliceous concretes initially occurred in the thermal decomposition product of the cement portion at a temperature range of 1400–1600 K. The subsequent melting behavior of the aggregate portion that occurs at a higher temperature was different between the samples, owing to the different compositions of the aggregates and the possible interaction of the aggregate with the molten cement portion.

Keywords

Siliceous concrete Thermal behavior Thermal analysis Thermal decomposition Melting 

Notes

Acknowledgements

The authors are deeply grateful to Mr. T. Yonemichi (Tokokikai Co.) for his assistance in many thermal analysis experiments and data processing. We wish to acknowledge valuable discussions and comments on the phenomenology of SCR with JAEA experts.

Supplementary material

10973_2019_8045_MOESM1_ESM.docx (965 kb)
Supplementary material 1 (DOCX 965 kb)

References

  1. 1.
    Ma Q, Guo R, Zhao Z, Lin Z, He K. Mechanical properties of concrete at high temperature—a review. Constr Build Mater. 2015;93:371–83.  https://doi.org/10.1016/j.conbuildmat.2015.05.131.Google Scholar
  2. 2.
    Fritzke HW, Shultheiss GF, editors. Experimental investigation of sodium–concrete interaction and mitigation protective layers. In: International conference on structural mechanics in reactor technology, 1983 Aug 22, Chicago; 1983.Google Scholar
  3. 3.
    Haneefa KM, Santhanam M, Ramasamy R, Parida FC. Hot sodium-triggered thermo-chemical degradation of concrete aggregates in the sodium resistant sacrificial layers of fast breeder reactors. Nucl Eng Des. 2013;265:654–67.  https://doi.org/10.1016/j.nucengdes.2013.08.062.Google Scholar
  4. 4.
    Mohammed Haneefa K, Santhanam M, Parida FC. Review of concrete performance at elevated temperature and hot sodium exposure applications in nuclear industry. Nucl Eng Des. 2013;258:76–88.  https://doi.org/10.1016/j.nucengdes.2013.01.018.Google Scholar
  5. 5.
    Kikuchi S, Koga N, Seino H, Ohno S. Kinetic study on liquid sodium–silica reaction for safety assessment of sodium-cooled fast reactor. J Therm Anal Calorim. 2015;121(1):45–55.  https://doi.org/10.1007/s10973-014-4387-x.Google Scholar
  6. 6.
    Kikuchi S, Koga N, Seino H, Ohno S. Experimental study and kinetic analysis on sodium oxide–silica reaction. J Nucl Sci Technol. 2016;53(5):682–91.  https://doi.org/10.1080/00223131.2015.1121843.Google Scholar
  7. 7.
    Kikuchi S, Koga N. Thermal behavior of sodium hydroxide–structural concrete composition of sodium-cooled fast reactor. J Therm Anal Calorim. 2018;131(1):301–8.  https://doi.org/10.1007/s10973-017-6236-1.Google Scholar
  8. 8.
    Schneider U, Diederichs U, Ehm C. Effect of temperature on steel and concrete for PCRV’s. Nucl Eng Des. 1982;67(2):245–58.  https://doi.org/10.1016/0029-5493(82)90144-3.Google Scholar
  9. 9.
    Alsmeyer H. BETA experiments in verification of the Wechsl code: experimental results on the melt-concrete interaction. Nucl Eng Des. 1987;103(1):115–25.  https://doi.org/10.1016/0029-5493(87)90289-5.Google Scholar
  10. 10.
    Reimann M. Verification of the WECHSL code on melt-concrete interaction and application to the core melt accident. Nucl Eng Des. 1987;103(1):127–37.  https://doi.org/10.1016/0029-5493(87)90290-1.Google Scholar
  11. 11.
    Journeau C, Piluso P. Core concrete interaction. Compr Nucl Mater. 2012;2:635–54.  https://doi.org/10.1016/b978-0-08-056033-5.00048-3.Google Scholar
  12. 12.
    Burson SB, Bradley D, Brockmann J, Copus E, Powers D, Greene G, et al. United States Nuclear Regulatory Commission Research Program on molten core debris interactions in the reactor cavity. Nucl Eng Des. 1989;115(2–3):305–13.  https://doi.org/10.1016/0029-5493(89)90055-1.Google Scholar
  13. 13.
    Bhatty JI. A review of the application of thermal analysis to cement-admixture systems. Thermochim Acta. 1991;189(2):313–50.  https://doi.org/10.1016/0040-6031(91)87128-j.Google Scholar
  14. 14.
    Sha W, O’Neill EA, Guo Z. Differential scanning calorimetry study of ordinary Portland cement. Cem Concr Res. 1999;29(9):1487–9.  https://doi.org/10.1016/s0008-8846(99)00128-3.Google Scholar
  15. 15.
    Shaw S, Henderson CMB, Komanschek BU. Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chem Geol. 2000;167(1–2):141–59.  https://doi.org/10.1016/s0009-2541(99)00206-5.Google Scholar
  16. 16.
    Zelic J, Rusic D, Krstulovic R. Kinetic analysis of thermal decomposition of Ca(OH)2 formed during hydration of commercial Portland cement by DSC. J Therm Anal Calorim. 2002;67(3):613–22.  https://doi.org/10.1023/A:1014348603686.Google Scholar
  17. 17.
    Handoo SK, Agarwal S, Agarwal SK. Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cem Concr Res. 2002;32(7):1009–18.  https://doi.org/10.1016/s0008-8846(01)00736-0.Google Scholar
  18. 18.
    Alonso C, Fernandez L. Dehydration and rehydration processes of cement paste exposed to high temperature environments. J Mater Sci. 2004;39(9):3015–24.  https://doi.org/10.1023/B:Jmsc.0000025827.65956.18.Google Scholar
  19. 19.
    Alarcon-Ruiz L, Platret G, Massieu E, Ehrlacher A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem Concr Res. 2005;35(3):609–13.  https://doi.org/10.1016/j.cemconres.2004.06.015.Google Scholar
  20. 20.
    Gabrovšek R, Vuk T, Kaučič V. Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chim Slov. 2006;53:159–65.Google Scholar
  21. 21.
    Garbev K, Bornefeld M, Beuchle G, Stemmermann P. Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 2: X-ray and thermogravimetry study. J Am Ceram Soc. 2008;91(9):3015–23.  https://doi.org/10.1111/j.1551-2916.2008.02601.x.Google Scholar
  22. 22.
    Zhang Q, Ye G. Dehydration kinetics of Portland cement paste at high temperature. J Therm Anal Calorim. 2012;110(1):153–8.  https://doi.org/10.1007/s10973-012-2303-9.Google Scholar
  23. 23.
    Zhang Q, Ye G. Quantitative analysis of phase transition of heated Portland cement paste. J Therm Anal Calorim. 2012;112(2):629–36.  https://doi.org/10.1007/s10973-012-2600-3.Google Scholar
  24. 24.
    Dambrauskas T, Baltakys K, Eisinas A, Siauciunas R. A study on the thermal stability of kilchoanite synthesized under hydrothermal conditions. J Therm Anal Calorim. 2016;127(1):229–38.  https://doi.org/10.1007/s10973-016-5424-8.Google Scholar
  25. 25.
    Tajuelo Rodriguez E, Garbev K, Merz D, Black L, Richardson IG. Thermal stability of C–S–H phases and applicability of Richardson and Groves’ and Richardson C–(A)–S–H(I) models to synthetic C–S–H. Cem Concr Res. 2017;93:45–56.  https://doi.org/10.1016/j.cemconres.2016.12.005.Google Scholar
  26. 26.
    Zhang R, Panesar DK. Investigation on Mg content in calcite when magnesium calcite and nesquehonite co-precipitate in hardened cement paste. Thermochim Acta. 2017;654:203–15.  https://doi.org/10.1016/j.tca.2017.04.005.Google Scholar
  27. 27.
    Koga N. Physico-Geometric Approach to the Kinetics of Overlapping Solid-State Reactions. In: Vyazovkin S, Koga N, Schick C, editors. Handbook of thermal analysis and calorimetry. 2nd ed. Amsterdam: Elsevier; 2018. p. 213–51.  https://doi.org/10.1016/b978-0-444-64062-8.00012-7.Google Scholar
  28. 28.
    Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74.  https://doi.org/10.1007/s10973-012-2500-6.Google Scholar
  29. 29.
    Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56(10):978–82.  https://doi.org/10.1103/PhysRev.56.978.Google Scholar
  30. 30.
    Yamnova NA, Zubkova NV, Eremin NN, Zadov AE, Gazeev VM. Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Cryst Rep. 2011;56(2):210–20.  https://doi.org/10.1134/s1063774511020209.Google Scholar
  31. 31.
    Koga N, Šesták J, Simon P. Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis. In: Šesták J, Simon P, editors. Thermal analysis of micro, nano- and non-crystalline materials. Berlin: Springer; 2013. p. 1–28.Google Scholar
  32. 32.
    Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113(3):1527–41.  https://doi.org/10.1007/s10973-012-2882-5.Google Scholar
  33. 33.
    Friedman HL. Kinetics of thermal degradation of cha-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci, Part C: Polym Lett. 1964;6:183–95.  https://doi.org/10.1002/polc.5070060121.Google Scholar
  34. 34.
    Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91.  https://doi.org/10.1021/jp110895z.Google Scholar
  35. 35.
    Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111(2):1045–56.  https://doi.org/10.1007/s10973-012-2445-9.Google Scholar
  36. 36.
    Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51(17):3998–4007.  https://doi.org/10.1016/j.polymer.2010.06.020.Google Scholar
  37. 37.
    Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.  https://doi.org/10.1016/0040-6031(71)85051-7.Google Scholar
  38. 38.
    Šesták J. Diagnostic limits of phenomenological kinetic models introducing the accommodation function. J Therm Anal. 1990;36(6):1997–2007.  https://doi.org/10.1007/bf01914116.Google Scholar
  39. 39.
    Šesták J. Rationale and fallacy of thermoanalytical kinetic patterns. J Therm Anal Calorim. 2011;110(1):5–16.  https://doi.org/10.1007/s10973-011-2089-1.Google Scholar
  40. 40.
    Koga N, Tanaka H. A Kinetic compensation effect established for the thermal-decomposition of a solid. J Therm Anal. 1991;37(2):347–63.  https://doi.org/10.1007/Bf02055937.Google Scholar
  41. 41.
    Koga N, Šesták J. Further aspects of the kinetic compensation effect. J Therm Anal. 1991;37(5):1103–8.  https://doi.org/10.1007/Bf01932804.Google Scholar
  42. 42.
    Koga N, Tanaka H. Effect of sample mass on the kinetics of thermal decomposition of a solid. 3. Nonisothermal mass-loss process of molten NH4NO3. Thermochim Acta. 1994;240:141–51.  https://doi.org/10.1016/0040-6031(94)87036-5.Google Scholar
  43. 43.
    Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.  https://doi.org/10.1016/0040-6031(92)85118-f.Google Scholar
  44. 44.
    Koga N. Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim Acta. 1995;258:145–59.  https://doi.org/10.1016/0040-6031(95)02249-2.Google Scholar
  45. 45.
    Gotor FJ, Criado JM, Málek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82.  https://doi.org/10.1021/jp0022205.Google Scholar
  46. 46.
    Criado JM, Pérez-Maqueda LA, Gotor FJ, Málek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72(3):901–6.  https://doi.org/10.1023/a:1025078501323.Google Scholar
  47. 47.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.  https://doi.org/10.1246/bcsj.38.1881.Google Scholar
  48. 48.
    Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100(1):109–18.  https://doi.org/10.1016/0040-6031(86)87053-8.Google Scholar
  49. 49.
    Koga N, Málek J. Accommodation of the actual solid-state process in the kinetic model function. 2. Applicability of the empirical kinetic model function to diffusion-controlled reactions. Thermochim Acta. 1996;283:69–80.Google Scholar
  50. 50.
    Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7(12):1103–12.  https://doi.org/10.1063/1.1750380.Google Scholar
  51. 51.
    Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–23.  https://doi.org/10.1063/1.1750631.Google Scholar
  52. 52.
    Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys. 1941;9(2):177–84.  https://doi.org/10.1063/1.1750872.Google Scholar
  53. 53.
    Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Pet Eng. 1939;135:416–58.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Fast Reactor Cycle System Research and Development CenterJapan Atomic Energy AgencyIbarakiJapan
  2. 2.Department of Science Education, Graduate School of EducationHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Graduate School of Creative Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations